
SaveSmart Easy
A lightweight, schema-first save manager for Unity that stores game data as JSON (with
optional basic encryption). Schema-first save system — define your schema in the editor,
generate typed C# accessors, then read and write with simple APIs. No string keys in
gameplay code. No boilerplate, no manual serialization.

Best for: Indie games, VR games, mobile games; single-player or local save; settings,
progress, unlocks.

Not ideal for: Massive live-service, per-frame telemetry, server-authoritative MMO.

Overview

Best for: Settings, level progress, and player state — anything you need to persist
between sessions.

Caching & performance: All reads and writes use an in-memory JSON cache per
slot. After the first load, subsequent Get / SaveData.XXX reads return instantly from
memory — no disk I/O. Each write updates both the cache and disk, so follow-up
reads remain instant. Fast enough for typical gameplay usage, with no runtime
allocation concerns after initial load.

Avoid: Writing every frame or inside tight loops; each write hits disk.

Paths: Current slot is stored in PlayerPrefs (key: SaveSmartEasy_CurrentSlot ,
default 1). Per-slot data: SaveData1.json … SaveDataN.json under
Application.persistentDataPath . Slot index is 1-based and must be ≥ 1.

Schema: Fields are defined in SaveSmartEasyConfig. The config asset must be in a
folder named Resources (e.g. Assets/Resources/SaveSmartEasyConfig.asset) so
Unity can load it. On first import, it may be auto-created there. Edit via Tools →
SaveSmart Easy → Edit SaveData Schema, then Save and Generate C# to
regenerate SaveDataAccessor.generated.cs .

Undo: Full Undo supported in the Schema Editor (add/remove/reorder/edit type,
name, comment).

Save File Editor: It includes a built-in Save File Editor (Play Mode Supported) that lets
you inspect and modify save data directly as raw JSON.

Autocomplete in code: After defining variables in the schema, you get IntelliSense
(autocomplete) when writing code, no need to worry about typos.

Read: Use SaveSmartEasy.SaveSmart.SaveData.XXX (or SaveSmart.SaveData.XXX
with using SaveSmartEasy;) or the key-based getters below.

Write: Assign to SaveSmart.SaveData.XXX = value or use the key-based setters.
Each assignment writes to disk immediately　(For best practice, avoid writing
every frame or inside tight loops.).

Encryption: Optional. Set UseEncryption = true and EncryptionKey for basic
protection (e.g. deter casual save editing). Not intended for high-security use; see
Optional encryption below.

Why Resources: The config must sit in a Resources folder so Unity can load it at runtime:

Used only to load the Config — nothing else.

No Addressables required.

Does not cause runtime memory leaks.

Loaded once and cached.

The config is a ScriptableObject — stored as a .asset file and persisted with your
project; schema data will not be lost when you close the editor.

Schema Change Notes: Rename and Delete both remove API access to the old key. The
old value may still sit in SaveDataN.json until the file is cleared or overwritten.

Rename = new key in schema; existing data stays under the old key (invisible to the
API).

Delete = field removed from schema; same as above — you can’t read or write it,
value may remain in the file.

Quick usage

Typed properties (after schema + generate):

using UnityEngine;
using System.Collections.Generic; // Required when using List<T> (e.g.
List<Vector3>)
using SaveSmartEasy;

public class SaveSmartEasyDemo : MonoBehaviour
{
 void Start()
 {
 // Slots (if you only use one save slot, you can skip this
section)
 SaveSmart.SetCurrentSlot(1); // switch active slot (1-based);
optional — default is 1; slot index must be ≥ 1
 SaveSmart.ClearSlot(2); // delete SaveData2.json
 int slot = SaveSmart.GetCurrentSlot();

 // SaveDataAccessor (typed properties from schema)
 // The code below is demo usage. You must edit the schema (Tools
SaveSmart Easy # Edit SaveData Schema)
 // to add your own variable names, then click "Save and Generate
C#" to get typed properties like SaveSmart.SaveData.YourVariableName.
 // Int
 SaveSmart.SaveData.CurrentStage = 5;
 int stage = SaveSmart.SaveData.CurrentStage;

 // String
 SaveSmart.SaveData.Username = "player1";
 string name = SaveSmart.SaveData.Username;

 // Float, Bool, Vector3, Color
 SaveSmart.SaveData.SomeFloatField = 3.14f;
 SaveSmart.SaveData.SomeBoolField = true;

 SaveSmart.SaveData.LastCheckpoint = new Vector3(1f, 2f, 3f);
 SaveSmart.SaveData.ThemeColor = Color.red;

 // DateTime
 System.DateTime dateTime = SaveSmart.SaveData.LastLoginTime;
 dateTime = System.DateTime.UtcNow;
 SaveSmart.SaveData.LastLoginTime = dateTime;
 // OR
 SaveSmart.SaveData.SkillCooldownEndTime =
System.DateTime.UtcNow.AddDays(1);

 // List<T> (define field as IntList, FloatList, StringList,
Vector3List, etc. in schema)
 // New one-liner — Add/Remove/Clear sync to disk automatically:
 SaveSmart.SaveData.UnlockedStage.Add("Stage1");
 SaveSmart.SaveData.ScoreList.Add(100);
 // Old pattern — List copy, modify, assign back — also
supported:
 List<int> scoreList = SaveSmart.SaveData.ScoreList;
 scoreList.Add(2);
 SaveSmart.SaveData.ScoreList = scoreList;
 // Replace entire list: SaveSmart.SaveData.UnlockedStage = new
List<string> { "Stage1", "Stage2" };

 // Arrays
 SaveSmart.SaveData.LevelScores = new int[] { 1, 2, 3 };
 int[] scores = SaveSmart.SaveData.LevelScores;
 SaveSmart.SaveData.PlayerNames = new string[] { "Alice", "Bob",
"Carol" };
 string[] names = SaveSmart.SaveData.PlayerNames;

 // Vector3 array (e.g. checkpoints, waypoints)
 SaveSmart.SaveData.Checkpoints = new Vector3[] { new Vector3(1f,
0f, 0f), new Vector3(2f, 0f, 0f) };
 Vector3[] points = SaveSmart.SaveData.Checkpoints;

 // From List<Vector3> to Vector3[]
 List<Vector3> waypoints = new List<Vector3> { Vector3.zero,
Vector3.one };
 SaveSmart.SaveData.Checkpoints = waypoints.ToArray();

 // Key-based get/set (key = variable name in Config)
 // You can also use this approach, but be careful of typos in
the key.
 SaveSmart.SetInt("CurrentStage", 5);
 // Dynamic key: build key string at runtime (e.g. "Stage1",
"Stage2"). Each key must exist in Config with correct type.
 int stageIndex = 1;
 int stageValue = SaveSmart.GetInt("Stage" + stageIndex, 1);
 SaveSmart.SetInt("Stage" + stageIndex, 3);
 stage = SaveSmart.GetInt("CurrentStage", 1);
 SaveSmart.SetString("Username", "player1");
 string username = SaveSmart.GetString("Username", "");
 SaveSmart.SetFloat("SomeFloatField", 3.14f);
 float value = SaveSmart.GetFloat("SomeFloatField", 0f);
 SaveSmart.SetBool("SomeBoolField", true);
 bool flag = SaveSmart.GetBool("SomeBoolField", false);
 SaveSmart.SetVector3("LastCheckpoint", new Vector3(1f, 2f, 3f));
 Vector3 pos = SaveSmart.GetVector3("LastCheckpoint",
Vector3.zero);
 SaveSmart.SetVector2("LastTouchPos", new Vector2(10f, 20f));
 Vector2 pos2 = SaveSmart.GetVector2("LastTouchPos",
Vector2.zero);
 SaveSmart.SetLong("TotalCoins", 999999L);
 long coins = SaveSmart.GetLong("TotalCoins", 0L);
 SaveSmart.SetDouble("HighScoreTime", 99.5);
 double time = SaveSmart.GetDouble("HighScoreTime", 0.0);
 SaveSmart.SetColor("ThemeColor", Color.red);
 Color themeColor = SaveSmart.GetColor("ThemeColor",
Color.white);
 SaveSmart.SetIntArray("LevelScores", new int[] { 1, 2, 3 });
 scores = SaveSmart.GetIntArray("LevelScores", null);

Schema and code generation

1. Open Tools → SaveSmart Easy → Edit SaveData Schema.

2. Add/remove/reorder fields. Each field has: Type, Variable name, and optional
Comment. Use valid C# identifiers for variable names (no spaces, no leading digits)
so the generated properties compile.

3. Click Save and Generate C#. This updates the config asset and regenerates

 SaveSmart.SetFloatArray("LevelTimes", new float[] { 10.5f, 20f
});
 float[] times = SaveSmart.GetFloatArray("LevelTimes", null);
 SaveSmart.SetStringArray("UnlockedLevelIds", new string[] {
"level_1", "level_2" });
 string[] ids = SaveSmart.GetStringArray("UnlockedLevelIds",
null);
 SaveSmart.SetVector3Array("Checkpoints", new Vector3[] { new
Vector3(1f, 0f, 0f), new Vector3(2f, 0f, 0f) });
 points = SaveSmart.GetVector3Array("Checkpoints", null);
 waypoints = new List<Vector3> { Vector3.zero, Vector3.one };
 SaveSmart.SetVector3Array("Checkpoints", waypoints.ToArray());

 // Key-based List (returns List<T>; same storage as Array, use
when you prefer List)
 List<int> unlockLevels = SaveSmart.GetIntList("UnlockLevels",
new List<int>());
 unlockLevels.Add(9);
 SaveSmart.SetIntList("UnlockLevels", unlockLevels);
 // Or use typed accessor for one-line Add:
SaveSmart.SaveData.UnlockLevels.Add(9);
 List<Color> colors = SaveSmart.GetColorList("ThemeColors",
null);

 }
}

SaveDataAccessor.generated.cs in SaveSmartEasy/Generated/ (the file is
overwritten each time).

4. Use SaveSmart.SaveData.YourVariableName in code (with using
SaveSmartEasy;). The key-based APIs (GetInt , SetString , etc.) use the same
variable names — they must match a variable in the config and the correct type, or
you get a warning and the call is ignored.

Dynamic key usage: You can build the key string at runtime for key-based API, e.g.
SaveSmart.GetInt("Stage" + stageIndex, 1) or SaveSmart.SetInt("Stage" +
stageIndex, value) . Each resulting key (e.g. "Stage1" , "Stage2") must be defined in
the schema with the correct type; otherwise you get a warning and the get returns the
default (set is ignored). For many dynamic keys, consider using an array field (e.g. int[]
LevelScores) and access by index instead.

Supported types: Int, Long, Float, Double, Bool, String, Vector2, Vector3, Color, Color32,
Quaternion, Rect, DateTime, IntArray, FloatArray, StringArray, BoolArray, Vector3Array,
Vector2Array, ColorArray, Color32Array, QuaternionArray, RectArray, DateTimeArray,
DoubleArray, LongArray. List variants: IntList, FloatList, StringList, BoolList, Vector3List,
Vector2List, ColorList, Color32List, QuaternionList, RectList, DateTimeList, DoubleList,
LongList — these produce IList<T> properties backed by SaveSmartList<T> . List note:
You can use one-line Add: SaveSmart.SaveData.UnlockedStage.Add("Stage1"); —
mutations sync to disk automatically. To replace the entire list:
SaveSmart.SaveData.UnlockedStage = new List<string> { "a", "b" }; . Key-based

API: use GetIntList / SetIntList , etc. (see Key-based get/set (lists) below).

In-Editor Save File Editor (Play Mode Supported)

Tools → SaveSmart Easy → Edit SaveData File opens an editor window to view and edit
the raw JSON for any save slot. This tool works even while the game is running (Play Mode),
making it ideal for rapid testing and debugging without restarting the game.

Save Slot Selection — Quickly switch between existing save slots (SaveData1.json,
SaveData2.json, etc.).

Reload From Disk — Re-read the file from disk to reflect changes written by the

game at runtime.

Direct JSON Editing — Edit save values directly in a text editor. JSON is
automatically formatted and ordered based on your schema for readability.

Safe Save & Hot Reload — JSON is validated before saving. Changes are written to
disk and the in-memory cache is updated immediately. The running game sees the
updated values instantly.

Reveal in File Explorer — Open the save folder directly in the system file manager for
inspection or backup.

Typical use cases:

Test different save states (e.g. set CurrentStage = 5) while the game runs.

Inspect or fix corrupted or partial JSON.

Debug cloud sync or encryption by inspecting readable JSON after decryption.

Storing custom objects as JSON

To save your own classes or structs (e.g. settings, inventory), use a String field and
serialize/deserialize with JsonUtility (or another JSON library).

1. Schema: In the Save Data Schema editor, add a field with type String and a name
(e.g. PlayerSettingsJson , InventoryData).

2. Save and Generate C# so the typed property exists.

3. Write: Serialize your object to a JSON string, then set it via the typed property (or key-
based SetString).

using SaveSmartEasy;
using UnityEngine;

[System.Serializable]
public class MyPlayerSettings
{
 public float MusicVolume = 1f;

4. Read: Get the string via the typed property, then deserialize with
JsonUtility.FromJson (or use key-based GetString).

The entire JSON string is stored as one String value (quotes and special characters are
escaped correctly). No need to add a separate "Json" type to the schema — String + your
own serialize/deserialize is enough.

API

All APIs are in namespace SaveSmartEasy , static class SaveSmart (and typed accessor
SaveSmart.SaveData).

 public float SfxVolume = 0.8f;
 public bool Fullscreen = true;
}

// Save (typed accessor first)
var settings = new MyPlayerSettings { MusicVolume = 0.5f, SfxVolume = 1f
};
string json = JsonUtility.ToJson(settings);
SaveSmart.SaveData.PlayerSettingsJson = json;
// Or key-based: SaveSmart.SetString("PlayerSettingsJson", json);

// Load (typed accessor first)
string json = SaveSmart.SaveData.PlayerSettingsJson;
if (string.IsNullOrEmpty(json)) json = "{}";
MyPlayerSettings settings = JsonUtility.FromJson<MyPlayerSettings>
(json);
Debug.Log("Music volume: " + settings.MusicVolume);
Debug.Log("Sfx volume: " + settings.SfxVolume);
Debug.Log("Fullscreen: " + settings.Fullscreen);
// Or key-based: string json = SaveSmart.GetString("PlayerSettingsJson",
"{}");

API Description

int GetCurrentSlot() Current save slot (1-based).

void SetCurrentSlot(int

slotIndex)

Set current slot (1-based, must be ≥ 1; slotIndex
can be any number, e.g. 1, 5, 100). Persisted via
PlayerPrefs.

void ClearSlot(int

slotIndex)

Delete SaveData{slot}.json for the given slot.

void InvalidateSlotCache() /
InvalidateSlotCache(int

slotIndex)

Clear in-memory cache (no arg = current slot). Next
read loads from disk. Use after manually editing the
save file.

string GetSavePath() /
GetSavePath(int slotIndex)

Save file path (no arg = current slot;
e.g. .../SaveData1.json).

API Description

SaveDataAccessor

SaveData

Typed read/write for current slot. Use
SaveSmart.SaveData.YourVariableName (properties generated

from schema). Assign to write and auto-save; read returns current
value.

Slot & path

Typed accessor (from schema)

Key-based get/set (scalars)

key must match a variable name in SaveSmartEasyConfig; type must match or the call is
ignored with a warning.

API Description

void SetInt(string key, int value) / int GetInt(string key,
int defaultValue = 0)

Int.

void SetLong(string key, long value) / long GetLong(string
key, long defaultValue = 0L)

Long.

void SetFloat(string key, float value) / float GetFloat(string
key, float defaultValue = 0f)

Float.

void SetDouble(string key, double value) / double
GetDouble(string key, double defaultValue = 0.0)

Double.

void SetBool(string key, bool value) / bool GetBool(string
key, bool defaultValue = false)

Bool.

void SetString(string key, string value) / string
GetString(string key, string defaultValue = "")

String.

void SetVector2(string key, Vector2 value) / Vector2
GetVector2(string key, Vector2 defaultValue)

Vector2.

void SetVector3(string key, Vector3 value) / Vector3
GetVector3(string key, Vector3 defaultValue)

Vector3.

void SetColor(string key, Color value) / Color GetColor(string
key, Color defaultValue)

Color.

Key-based get/set (arrays)

API Description

void SetIntArray(string key, int[] value) / int[]
GetIntArray(string key, int[] defaultValue = null)

Int array.

void SetLongArray(string key, long[] value) / long[]
GetLongArray(string key, long[] defaultValue = null)

Long array.

void SetFloatArray(string key, float[] value) / float[]
GetFloatArray(string key, float[] defaultValue = null)

Float array.

void SetDoubleArray(string key, double[] value) / double[]
GetDoubleArray(string key, double[] defaultValue = null)

Double
array.

void SetBoolArray(string key, bool[] value) / bool[]
GetBoolArray(string key, bool[] defaultValue = null)

Bool array.

void SetStringArray(string key, string[] value) / string[]
GetStringArray(string key, string[] defaultValue = null)

String array.

void SetVector2Array(string key, Vector2[] value) / Vector2[]
GetVector2Array(string key, Vector2[] defaultValue = null)

Vector2
array.

void SetVector3Array(string key, Vector3[] value) / Vector3[]
GetVector3Array(string key, Vector3[] defaultValue = null)

Vector3
array.

void SetColorArray(string key, Color[] value) / Color[]
GetColorArray(string key, Color[] defaultValue = null)

Color array.

void SetColor32Array(string key, Color32[] value) / Color32[]
GetColor32Array(string key, Color32[] defaultValue = null)

Color32
array.

void SetQuaternionArray(...) / Quaternion[]
GetQuaternionArray(...)

Quaternion
array.

void SetRectArray(...) / Rect[] GetRectArray(...) Rect array.

void SetDateTimeArray(...) / DateTime[] GetDateTimeArray(...) DateTime
array.

API Description

void SetIntList(string key, List<int> value) / List<int>
GetIntList(string key, List<int> defaultValue = null)

Int list.

void SetFloatList(...) / List<float> GetFloatList(...) Float list.

void SetStringList(...) / List<string> GetStringList(...) String list.

void SetBoolList(...) / List<bool> GetBoolList(...) Bool list.

void SetLongList(...) / List<long> GetLongList(...) Long list.

void SetDoubleList(...) / List<double> GetDoubleList(...) Double list.

void SetVector3List(...) / List<Vector3> GetVector3List(...) Vector3 list.

void SetVector2List(...) / List<Vector2> GetVector2List(...) Vector2 list.

void SetColorList(...) / List<Color> GetColorList(...) Color list.

void SetColor32List(...) / List<Color32> GetColor32List(...) Color32 list.

void SetQuaternionList(...) / List<Quaternion>
GetQuaternionList(...)

Quaternion
list.

void SetRectList(...) / List<Rect> GetRectList(...) Rect list.

void SetDateTimeList(...) / List<DateTime>
GetDateTimeList(...)

DateTime
list.

Key-based get/set (lists)

Same storage as arrays; use when you prefer List<T> . key must match a variable of the
corresponding List type in Config.

Readable JSON (decrypts when slot was encrypted)

API Description

string ReadJson() Full JSON string for current slot (decrypted if needed).
Returns "{}" if missing or error.

string ReadJson(int

slotIndex)

Full JSON string for the given slot (decrypted if needed).
Returns "{}" if missing or error.

API Description

string ReadRawJson() File contents for current slot, no decrypt. Returns
null if missing or error.

string ReadRawJson(int

slotIndex)

File contents for the given slot, no decrypt.
Returns null if missing or error.

void WriteRawJson(string

json)

Write string to current slot (no encrypt).

void WriteRawJson(string

json, int slotIndex)

Write string to the given slot (no encrypt).

API Description

bool

UseEncryption

When true , save files are encrypted on write and decrypted on read
(fallback to plain JSON on failure).

string

EncryptionKey

Key string for AES (any length, derived to 128-bit). Must match for
read/write.

Raw JSON (no decrypt; for sync/debug)

Encryption (static fields) — basic protection only

Slots

The “current” slot is stored in PlayerPrefs (key: SaveSmartEasy_CurrentSlot ,
default 1). All normal read/write goes to save{CurrentSlot}.json .

SetCurrentSlot(slot) — switch slot (1-based); saves via PlayerPrefs. Note: slot
must be ≥ 1; slot numbers do not need to be sequential (e.g. 1, 2, 5).

GetCurrentSlot() — returns the current save slot (1-based). Useful for UI display or
logic that depends on which slot is active.

ClearSlot(slot) — deletes save{slot}.json . Next load for that slot is empty.

GetSavePath() / GetSavePath(slotIndex) — useful for debugging or custom
tools. To check if save data exists for a slot, use
System.IO.File.Exists(SaveSmart.GetSavePath(slotIndex)) .

Manual edit on disk: If you edit the save file at runtime, call
SaveSmart.InvalidateSlotCache() (current slot) or
SaveSmart.InvalidateSlotCache(slotIndex) so the next read loads the updated

content from disk.

Optional encryption (basic protection)

Encryption is a bonus for basic protection — e.g. to deter casual cheating by editing save
files. It is not intended for high-security use; treat it as obfuscation, not security-grade.

Set SaveSmartEasy.SaveSmart.UseEncryption = true to encrypt on write and
decrypt on read (AES, key derived from EncryptionKey).

Set SaveSmartEasy.SaveSmart.EncryptionKey to any string (e.g. in code). Same
key must be used for read and write.

If decryption fails (wrong key or corrupted data), the loader falls back to treating the
file as plain JSON.

Current slot (PlayerPrefs) is not encrypted; only the per-slot save files are.

Raw JSON and readable JSON (advanced)

To get readable JSON for a slot (including when it was saved with encryption):

ReadJson() / ReadJson(slotIndex) — loads the slot and decrypts when needed.
Returns the full JSON string in readable form. Returns "{}" if the file is missing or on

error. Use this when you need the entire save as a JSON string for a given slot.

For cloud sync or custom pipelines (raw file, no decrypt):

ReadRawJson() / ReadRawJson(slotIndex) — returns the file contents as-is (no
decryption). Returns null if missing or on error. If the slot was saved with
encryption enabled, the returned string is encrypted (garbled) raw bytes, not
readable JSON.

WriteRawJson(json) / WriteRawJson(json, slotIndex) — writes the string
directly (no encryption). The content does not have to be valid JSON; it can be plain
JSON or already encrypted/garbled data (e.g. from ReadRawJson of an encrypted
slot).

Example: cloud backup with your own server

1. Read the slot with ReadRawJson(slotIndex) (raw bytes, no decrypt).

2. Upload that string to your server (e.g. via HTTP POST) and store it per user.

3. When the user logs in on another device or re-installs, download the saved string from
your server.

4. Write it back with WriteRawJson(downloadedString, slotIndex) so the slot is
restored exactly (including encryption if it was originally encrypted).

ReadJson vs ReadRawJson vs internal load

 ReadJson(slotIndex) ReadRawJson Internal loader (used
by Get/Set)

Decrypt Yes. Returns readable
JSON (decrypts when
slot was encrypted).

No. File bytes only; if
encrypted, you get
garbled text.

Yes. If content does not
start with { , decrypts
then uses result.

On
missing
/ error

Returns "{}" . Returns null . Returns "{}" .

Use
case

Get full readable JSON
for a slot (e.g. slot 2).

Debugging, external
sync, or when you
handle encryption
yourself.

Used automatically by
GetInt , SetString ,
SaveData.XXX , etc.

So: use ReadJson()ReadJson() or ReadJson(slotIndex)ReadJson(slotIndex) when you want the entire save as
readable JSON for a slot (including decryption). Use ReadRawJson when you want the raw
file with no decryption (e.g. to send to a server or inspect on disk).

Summary

What you need Where

Unity version 2020.3 or later (LTS recommended)

Edit schema Tools → SaveSmart Easy → Edit SaveData Schema → Save and Generate

C#

Edit save JSON

(runtime testing)

Tools → SaveSmart Easy → Edit SaveData File — view/edit JSON while

game runs

Full Undo Schema Editor supports Undo (Ctrl+Z / Cmd+Z) for all field changes

Config asset Must be in a Resources folder (e.g.

Assets/Resources/SaveSmartEasyConfig.asset). Auto-created on first

import if missing.

Generated

accessor

SaveSmartEasy/Generated/SaveDataAccessor.generated.cs

Read/write in code SaveSmartEasy.SaveSmart.SaveData.XXX or GetXXX / SetXXX by key

Current slot PlayerPrefs key SaveSmartEasy_CurrentSlot

Files on disk SaveData1.json , … under Application.persistentDataPath

For more detail, see the XML remarks on SaveSmart and SaveDataAccessor in the
source, or the in-code examples in SaveSmartEasy.cs .

	SaveSmart Easy
	Overview
	Quick usage
	Schema and code generation
	In-Editor Save File Editor (Play Mode Supported)
	Storing custom objects as JSON
	API
	Slot & path
	Typed accessor (from schema)
	Key-based get/set (scalars)
	Key-based get/set (arrays)
	Key-based get/set (lists)
	Readable JSON (decrypts when slot was encrypted)
	Raw JSON (no decrypt; for sync/debug)
	Encryption (static fields) — basic protection only

	Slots
	Optional encryption (basic protection)
	Raw JSON and readable JSON (advanced)
	ReadJson vs ReadRawJson vs internal load

	Summary

