SpreadsheetEasy

SpreadsheetEasy is a powerful Unity asset that simplifies reading and accessing
Spreadsheet files (.xIsx, .xls) in your Unity projects. It provides an intuitive API for querying
Spreadsheet data by column names, making it perfect for game configuration files,
localization data, and other data-driven content.

Features

= Easy Spreadsheet Access: Read Spreadsheet files with simple API calls
= Type-Safe Queries: Query data by column names instead of cell coordinates
= Multiple Data Types: Support for string, int, float, double, Vector3, Color, and arrays

= TryGet API: Clean error handling without try-catch blocks - returns bool and outputs

result via out parameter

= Row-Based Access: Get entire rows as SpreadsheetRow objects for efficient

multiple value retrieval
= JSON Export: Convert Spreadsheet data to JSON format for easy integration
= Runtime & Editor Support: Works in both Editor and runtime builds

= High Performance: Index cache system provides 50-100x speedup for frequent
queries

= Automatic Caching: Data and indices are cached after first load for optimal

performance

= JSON Validation: Validate JSON format in Spreadsheet cells with automatic
detection and comprehensive error reporting

= Spreadsheet Data JSON Checker: Standalone JSON validation tool that validates
JSON format in Spreadsheet files directly from any folder

Requirements

= Unity 2020.3 or later

= ExcelDataReader (included)

Quick Start
1. Setup

Place your Spreadsheet files (.x1sx or .xls) in the StreamingAssets folder:
StreamingAssets Folder

= Create a StreamingAssets folder: Assets/StreamingAssets/

= Unity supports only one StreamingAssets folder, but you can organize files in
subdirectories

= Place Spreadsheet files directly in Assets/StreamingAssets/ or any subdirectory
= Example:

= Assets/StreamingAssets/Config.xlsx (or .xls)

= Assets/StreamingAssets/GameData/Items.x1lsx (or .xls)

» Assets/StreamingAssets/GameData/Enemies.xls (or .xlsx)

2. Load Spreadsheet Files

In your code, call LoadAl1Spreadsheet() to load all Spreadsheet files:

using SpreadsheetEasy;

void Awake()

{
// Load all Spreadsheet files from StreamingAssets

SpreadsheetReader.LoadAllSpreadsheet();

Optional - Lazy Loading: If you have many Spreadsheet files and don't want to load them
all at once, you can skip calling LoadAllSpreadsheet() . When you use any query method
(like GetInt(), GetRow(), etc.), SpreadsheetEasy will automatically load the required file
on first access and cache it for subsequent queries. The first read operation will be slightly
slower, but all subsequent queries will use the cached data for optimal performance.

Note: LoadAllSpreadsheet() automatically scans:

= StreamingAssets folder (including subdirectories) - Works in both Editor and
Runtime

= Unity has only one StreamingAssets folder (Assets/StreamingAssets/)

= You can organize files in subdirectories within StreamingAssets
Important: File Name Requirements

WARNING: File names must be unique across all subdirectories!
SpreadsheetEasy uses file names (without path and extension) as cache keys. This means:

= Allowed: Different paths, same file name
= StreamingAssets/Config/PlayerConfig.xlsx — cached as "PlayerConfig"

= StreamingAssets/GameData/PlayerConfig.xlsx — cached as
"PlayerConfig" (CONFLICT!})

If you have multiple Spreadsheet files with the same name in different subdirectories,
only the first one loaded will be accessible. The later files will be ignored or overwrite
the cache!

Best Practice: Ensure all Spreadsheet file names are unique, regardless of their folder
location:

= OK: StreamingAssets/Config/PlayerConfig.xlsx and

StreamingAssets/GameData/EnemyConfig.x1lsx (different names)

= OK: StreamingAssets/Config/PlayerConfig.xlsx and

StreamingAssets/GameData/PlayerData.x1lsx (different names)

= ERROR: StreamingAssets/Config/Config.xlsx and

StreamingAssets/GameData/Config.x1lsx (same name - conflict!)

File Name Normalization: SpreadsheetEasy automatically normalizes file names by
removing paths and extensions:

= "SpreadsheetEasy/PlayerConfig.xlsx" — "PlayerConfig"
= "PlayerConfig.xlsx" — "PlayerConfig"

= "PlayerConfig" — "PlayerConfig"

This means you can use any of these formats when querying, and they will all resolve to the
same cache key:

using SpreadsheetEasy;

// All these are equivalent:
SpreadsheetReader.GetString("SpreadsheetEasy/PlayerConfig", "Players",
"ID", "POOQ1l", "Name");
SpreadsheetReader.GetString("PlayerConfig.x1lsx", "Players", "ID",
"PQ@@1", "Name");

SpreadsheetReader.GetString("PlayerConfig", "Players", "ID", "POQ1l",

"Name");

3. Basic Usage

Important: The first row of your Spreadsheet sheet must contain column headers
(column names). Data rows start from the second row.

Example Spreadsheet Structure:

ID Name Rarity HP Speed Position Rotation Color Items Scores ELE Active
001 Player1 Epic 100 55 10,20,30 0,90,0 #FF0000 1,2,3 95.5,88.0,92.3 warrior,tank true
(0]023 Player2 Rare 80 6.0 15,25,35 0,180,0 #00FFOO 4,5,6 78.2,85.1,90.0 mage,healer false

using SpreadsheetEasy;

// Get a string value
string playerName = SpreadsheetReader.GetString("PlayerConfig",
"P'I-ayer'SH, "IDH’ llP@@lll, "Name");

// Get an integer value
int health = SpreadsheetReader.GetInt("PlayerConfig", "Players", "ID",
"P@@l", IlHPll);

// Get a float value

float speed = SpreadsheetReader.GetFloat("PlayerConfig", "Players",
"ID"’ llP@Ol", "Speed");

// Get a bool value (supports: true/false, 1/0, yes/no, case-
insensitive)

bool isActive = SpreadsheetReader.GetBool("PlayerConfig", "Players",
"ID", "POOl1l", "Active");

// Get an Enum value (supports string name case-insensitive or integer
value)

// Note: GetEnum<T>() returns only the first matching result

// Use GetAllEnums<T>() to get all matching results when multiple
rows match

public enum PlayerRarity { Common, Rare, Epic, Legendary }

PlayerRarity rarity = SpreadsheetReader.GetEnum<PlayerRarity>
("PlayerConfig", "Players", "ID", "P@@1", "Rarity");

// Get all Enum values when multiple rows match the search condition
List<PlayerRarity> allRarities =
SpreadsheetReader.GetAl1Enums<PlayerRarity>("PlayerConfig", "Players",
"HP", "100", "Rarity");

// You can also use Enum.ToString() as search value
string playerName = SpreadsheetReader.GetString("PlayerConfig",
"Players", "Rarity", PlayerRarity.Epic.ToString(), "Name");

// Get a Vector3 (format: "x,y,z" or "x;y;z"

Vector3 position = SpreadsheetReader.GetVector3("PlayerConfig",
"Players", "ID", "P@@1", "Position");

Vector3 rotation = SpreadsheetReader.GetVector3("PlayerConfig",
"Players", "ID", "P@@1", "Rotation");

// Get a Color (supports hex #RRGGBB, #RRGGBBAA, or comma/semicolon-
separated r,g,b,a or r;g;b;a)

Color playerColor = SpreadsheetReader.GetColor("PlayerConfig",
"Players", "ID", "P0OOl1", "Color");

// Get an int array (format: "1,2,3" or "1;2;3")
int[] items = SpreadsheetReader.GetIntArray("PlayerConfig", "Players",
"ID"’ llP@@lll, llItemS");

// Get a float array (format: "1.5,2.5,3.5" or "1.5;2.5;3.5")
float[] scores = SpreadsheetReader.GetFloatArray("PlayerConfig",
"Players", "ID", "POOl", "Scores");

// Get a string array (format: "a,b,c" or "a;b;c")
string[] tags = SpreadsheetReader.GetStringArray("PlayerConfig",
IIP'Layer‘SII’ IIIDII’ llP@@lll’ llTags");

Using TryGet Methods (No try-catch needed):

using SpreadsheetEasy;

// TryGet methods return bool and output the result via out parameter

// No need for try-catch blocks - cleaner code!

1f (SpreadsheetReader.TryGetInt("PlayerConfig", "Players", "ID", "1001",
"HP", out int hp))
{
Debug.Log($"HP is {hp}");
¥

else

{
Debug.Log("HP not found or invalid format");

// Works with all data types
if (SpreadsheetReader.TryGetString("PlayerConfig", "Players", "ID",
"PO@1", "Name", out string name))

{
Debug.Log($"Player name: {name}");

if (SpreadsheetReader.TryGetFloat("PlayerConfig", "Players", "ID",
"1001", "Speed", out float speed))

{
Debug.Log($"Speed: {speed}™);

1f (SpreadsheetReader.TryGetBool("PlayerConfig", "Players", "ID",
"1001", "Active", out bool isActive))

{
Debug.Log($"Item is active: {isActive}");

4. SpreadsheetRow for Multiple Values

When you need multiple values from the same row, use SpreadsheetRow for better

performance:

using SpreadsheetEasy;

SpreadsheetRow playerRow = SpreadsheetReader.GetRow("PlayerConfig",
"Players", "ID", "POO1");
if (playerRow != null)
{

string name = playerRow.GetString("Name");

int hp = playerRow.GetInt("HP");
playerRow.GetFloat("Speed");
playerRow.GetBool("Active");

float speed

bool active

// Note: Enum values should be read using

SpreadsheetReader.GetEnum<T>() or SpreadsheetReader.TryGetEnum<T>()

// SpreadsheetRow does not have GetEnum method - use
SpreadsheetReader methods instead

Vector3 pos = playerRow.GetVector3("Position");

Vector3 rot = playerRow.GetVector3("Rotation");

Color col = playerRow.GetColor("Color");

int[] items = playerRow.GetIntArray("Items");
float[] scores = playerRow.GetFloatArray("Scores");
string[] tags = playerRow.GetStringArray("Tags");

5. Multiple Search Conditions

You can search with multiple conditions using Dictionary<string, string> . All

conditions must be satisfied (AND logic):

using SpreadsheetEasy;

// Create search conditions
Dictionary<string, string> conditions = new Dictionary<string, string>
{
{ "HP", "100" },
{ "Speed", "3" }
}s

// Get single row with multiple conditions
SpreadsheetRow playerRow = SpreadsheetReader.GetRow("PlayerConfig",
"Players", conditions);

if (playerRow != null)

{
string name = playerRow.GetString("Name");
int hp = playerRow.GetInt("HP");
float speed = playerRow.GetFloat("Speed");
Debug.Log($"Player: {name}, HP: {hp}, Speed: {speed}");
ks

// Get all rows matching multiple conditions

List<SpreadsheetRow> playerRows =
SpreadsheetReader.GetAl1Rows("PlayerConfig", "Players", conditions);
foreach (SpreadsheetRow row in playerRows)

{
Debug.Log($"Player: {row.GetString("Name")}");

// Get single value with multiple conditions

string playerName = SpreadsheetReader.GetString("PlayerConfig",
"Players", conditions, "Name");

int level = SpreadsheetReader.GetInt("PlayerConfig", "Players",

conditions, "Level");

// Get all values with multiple conditions

List<string> playerNames =
SpreadsheetReader.GetAl1Strings("PlayerConfig", "Players", conditions,
"Name");

List<int> levels = SpreadsheetReader.GetAllInts("PlayerConfig",

"Players", conditions, "Level");

API Reference

GetValue Methods

All GetValue methods follow this pattern:

SpreadsheetReader.Get[Type](fileName, sheetName, searchColumn,

searchValue, targetColumn)

Parameters:

fileName : Name of the Spreadsheet file (supports full path like
"SpreadsheetEasy/PlayerConfig" or file name only like "PlayerConfig" , with or

without extension)

» Important: File names must be unique across all subdirectories!

SpreadsheetEasy uses file names (without path and extension) as cache keys.

= Examples: "PlayerConfig" , "SpreadsheetEasy/PlayerConfig",

"PlayerConfig.x1lsx" all resolve to the same cache key "PlayerConfig"
= sheetName : Name of the sheet within the Spreadsheet file
= sedarchColumn : Column name to search for matching values
= searchValue : Value to match in the search column

= targetColumn : Column name to retrieve the value from
Available Methods (Single Condition):

Note: All methods throw exceptions when the row is not found (see Error Handling section).

Default values are returned only when the row is found but the cell value is empty or cannot
be parsed.

GetString() - Returns string value (throws KeyNotFoundException if row not

found, returns empty string if cell is empty)

GetInt() - Returns int value (throws KeyNotFoundException if row not found,
returns O if cell is empty or parse fails)

= GetFloat() - Returns float value (throws KeyNotFoundException if row not found,
returns Of if cell is empty or parse fails)

= GetDouble() - Returns double value (throws KeyNotFoundException if row not

found, returns 0.0 if cell is empty or parse fails)

= GetBool() - Returns bool value (throws KeyNotFoundException if row not found,

returns false if cell is empty or parse fails)

= Accepts: "true", "false", "1", "0", "yes", "no" (all case-insensitive,
e.g., TRUE, False, YES work too)

= GetEnum<T>() - Returns Enum value (throws KeyNotFoundException if row not

found, returns default enum value if cell is empty or parse fails)

= |Important: Returns only the first matching result. If multiple rows match the
search condition, use GetAllEnums<T>() instead to get all matching results.

» Supports parsing from string name (case-insensitive) or integer value

= Example: GetEnum<PlayerRarity>("PlayerConfig", "Players", "ID",
"POO1", "Rarity")

» Spreadsheet cell value can be "Common", "common", "COMMON", or "0"
(integer value)

GetVector3() - Returns Vector3 (throws KeyNotFoundException if row not found,

returns zero if cell is empty or parse fails)
= Format: "x,y,z" or "x;y;z"

GetColor() - Returns Color (throws KeyNotFoundException if row not found,

returns white if cell is empty or parse fails)
» Formats: "r,g,b,a", "r;g;b;a", "#RRGGBB" , or "#RRGGBBAA"

GetIntArray() - Returns int[] (throws KeyNotFoundException if row not found,

returns empty array if cell is empty or parse fails)
= Format: "1,2,3" or "1;2;3"

GetFloatArray() - Returns float[] (throws KeyNotFoundException if row not found,

returns empty array if cell is empty or parse fails)
= Format: "1.5,2.5,3.5" or "1.5;2.5;3.5"

GetStringArray() - Returns string[] (throws KeyNotFoundException if row not
found, returns empty array if cell is empty or parse fails)

= Format: "a,b,c" or "a;b;c"

Available Methods (Multiple Conditions):

All Get* methods support multiple search conditions using Dictionary<string,

string> :

// Get value with multiple conditions
SpreadsheetReader.Get[Type](fileName, sheetName, Dictionary<string,

string> searchConditions, targetColumn)

Example:

// Create search conditions: HP = 100 AND Speed = 3

Dictionary<string, string> conditions = new Dictionary<string, string>

{
{ "HP", "100" },
{ "Speed", "3" }
s

// Get single value with multiple conditions

string playerName = SpreadsheetReader.GetString("PlayerConfig",
"Players", conditions, "Name");

int level = SpreadsheetReader.GetInt("PlayerConfig", "Players",
conditions, "Level");

float speed = SpreadsheetReader.GetFloat("PlayerConfig", "Players",

conditions, "Speed");

Note: All conditions must be satisfied (AND logic). The method returns the first matching
row's value.

Important: Multiple condition search supports numeric-aware comparison. For example,
searching with "3" will match Spreadsheet values like "3.0" or "3" , and vice versa.

This makes it easier to search numeric columns without worrying about exact string format.
Available GetAll Methods (Multiple Values):

When multiple rows match your search criteria, use GetAll* methods to retrieve all

matching values:

= GetAllStrings() - Returns List<string> containing all matching string values
= GetAllInts() - Returns List<int> containing all matching int values

= GetAllFloats() - Returns List<float> containing all matching float values

= GetAllDoubles() - Returns List<double> containing all matching double values
= GetAllBools() - Returns List<bool> containing all matching bool values

= GetAllEnums<T>() - Returns List<T> containing all matching Enum values

= GetAllVector3s() - Returns List<Vector3> containing all matching Vector3

values

= GetAllColors() - Returns List<Color> containing all matching Color values

Note: All GetAl1l* methods throw exceptions when the file/sheet is not found. They return
empty lists only when no matching rows are found (but file/sheet exists). For Enum values,
use TryGetAllEnums<T>() to avoid exception handling.

All GetAll* methods support both single condition and multiple conditions:

// Single condition
List<T> GetAll[Type](fileName, sheetName, searchColumn, searchValue,
targetColumn)

// Multiple conditions

List<T> GetAll[Type](fileName, sheetName, Dictionary<string, string>
searchConditions, targetColumn)

TryGetValue Methods

The TryGet* methods provide a cleaner way to query Spreadsheet data without using try-
catch blocks. These methods return bool to indicate success or failure, and output the

result through an out parameter.

All TryGetValue methods follow this pattern:

bool SpreadsheetReader.TryGet[Type](fileName, sheetName, searchColumn,
searchValue, targetColumn, out [Type] result)

Parameters:

= Same as Get* methods, plus:

= result : Output parameter that receives the value if the operation succeeds

Return Value:

= Returns true if the value was found and successfully parsed

= Returns false if the row was not found, the file/sheet/column doesn't exist, or the

value cannot be parsed
Available TryGet Methods (Single Condition):

» TryGetString() - Returns bool, outputs string value
= TryGetInt() - Returns bool, outputs int value

= TryGetFloat() - Returns bool, outputs float value

= TryGetDouble() - Returns bool, outputs double value
= TryGetBool() - Returns bool, outputs bool value

= Accepts: "true", "false", "1", "0", "yes", "no" (all case-insensitive)
= TryGetEnum<T>() - Returns bool, outputs Enum value
= Supports parsing from string name (case-insensitive) or integer value
= TryGetVector3() - Returns bool, outputs Vector3 value
= Format: "x,y,z" or "x;y;z"
= TryGetColor() - Returns bool, outputs Color value
» Formats: "r,g,b,a", "r;g;b;a", "#RRGGBB" , or "#RRGGBBAA"
» TryGetIntArray() - Returns bool, outputs int[] value
= Format: "1,2,3" or "1;2;3"
= TryGetFloatArray() - Returns bool, outputs float[] value

= Format: "1.5,2.5,3.5" or "1.5;2.5;3.5"

= TryGetStringArray() - Returns bool, outputs string[] value

= Format: "a,b,c" or "a;b;c"

Available TryGet Methods (Multiple Conditions):

All TryGet* methods support multiple search conditions using Dictionary<string,

string> :

bool SpreadsheetReader.TryGet[Type](fileName, sheetName,
Dictionary<string, string> searchConditions, targetColumn, out [Type]
result)

Example:

// Single condition - no try-catch needed!
1f (SpreadsheetReader.TryGetInt("PlayerConfig", "Players", "ID", "1001",
"HP", out int hp))

{
Debug.Log($"HP is {hp}");
ks
else
{
Debug.Log("HP not found or invalid format");
ks

// Multiple conditions
Dictionary<string, string> conditions = new Dictionary<string, string>
{
{ "HP", "100" },
{ "Speed", "3" }
¥

i1f (SpreadsheetReader.TryGetString("PlayerConfig", "Players",

conditions, "Name", out string name))

{
Debug.Log($"Player name is {name}");

h

else

Debug.Log("Player not found");

// TryGet with different types
if (SpreadsheetReader.TryGetFloat("PlayerConfig", "Players", "ID",
"1001", "Speed", out float speed))

{
Debug.Log($"Speed is {speed}");

1f (SpreadsheetReader.TryGetBool("PlayerConfig", "Players", "ID",
"1001", "Active", out bool isActive))

{
Debug.Log($"Item is active: {isActive}");

1f (SpreadsheetReader.TryGetEnum<PlayerRarity>("PlayerConfig",
"Players", "ID", "P@@1", "Rarity", out PlayerRarity rarity))

{
Debug.Log($"Player rarity: {rarity}");

}

else

{

Debug.Log("Player rarity not found or invalid format");

if (SpreadsheetReader.TryGetVector3("PlayerConfig", "Players", "ID",
"1001", "Position", out Vector3 position))

{
Debug.Log($"Position is {position}");

if (SpreadsheetReader.TryGetColor("PlayerConfig", "Players", "ID",
"1001", "Color", out Color color))

{

Debug.Log($"Color is {color}");

if (SpreadsheetReader.TryGetIntArray("PlayerConfig", "Players", "ID",
"1001", "Items", out int[] items))

{
Debug.Log($"Items array has {items.Length} elements");

// TryGetAllEnums: Get all Enum values without exception handling
1f (SpreadsheetReader.TryGetAllEnums<PlayerRarity>("PlayerConfig",
"Players", "HP", "100", "Rarity", out List<PlayerRarity> rarities))
{

Debug.Log($"Found {rarities.Count} matching rarities");

foreach (PlayerRarity rarity in rarities)

{
Debug.Log($"Rarity: {rarity}");
ks
ks
else
{

Debug.Log("Failed to get Enum values (file/sheet not found or
invalid)");
¥

// TryGetAllStrings: Get all string values without exception handling
i1f (SpreadsheetReader.TryGetAllStrings("PlayerConfig", "Players", "HP",
"100", "Name", out List<string> names))
{

Debug.Log($"Found {names.Count} matching names");

foreach (string name in names)

{
Debug.Log($"Name: {name}");

// TryGetAllInts: Get all int values without exception handling
if (SpreadsheetReader.TryGetAllInts("PlayerConfig", "Players", "Rarity",
"Epic", "HP", out List<int> hps))
{
Debug.Log($"Found {hps.Count} HP values");

// TryGetAllFloats: Get all float values without exception handling
if (SpreadsheetReader.TryGetAllFloats("PlayerConfig", "Players", "HP",
"100", "Speed", out List<float> speeds))

{
Debug.Log($"Found {speeds.Count} speed values");

// TryGetAllBools: Get all bool values without exception handling
1f (SpreadsheetReader.TryGetAllBools("PlayerConfig", "Players", "HP",
"100", "Active", out List<bool> actives))

{

Debug.Log($"Found {actives.Count} active status values");

// TryGetAllVector3s: Get all Vector3 values without exception handling
i1f (SpreadsheetReader.TryGetAllVector3s("PlayerConfig", "Players", "HP",
"100", "Position", out List<Vector3> positions))

{

Debug.Log($"Found {positions.Count} position values");

// TryGetAllColors: Get all Color values without exception handling
i1f (SpreadsheetReader.TryGetAllColors("PlayerConfig", "Players", "HP",

"100", "Color", out List<Color> colors))

{

Debug.Log($"Found {colors.Count} color values");

Benefits of TryGet Methods:

No try-catch blocks: Cleaner code without exception handling
Explicit failure handling: Return value clearly indicates success or failure
Safe defaults: Output parameter is set to default value (0, false, null, etc.) on failure

Performance: Same performance as Get* methods (uses the same index cache

system)

Available TryGetAll Methods (Multiple Values):

All TryGetAl1l* methods provide exception-free access to multiple matching values:

TryGetAllStrings() - Returns bool, outputs List<string> containing all

matching string values

TryGetAllInts() - Returns bool, outputs List<int> containing all matching int

EIES

TryGetAllFloats() - Returns bool, outputs List<float> containing all matching

float values

TryGetAllDoubles() - Returns bool, outputs List<double> containing all

matching double values

TryGetAl1Bools() - Returns bool, outputs List<bool> containing all matching

bool values

TryGetAllEnums<T>() - Returns bool, outputs List<T> containing all matching

Enum values

TryGetAllVector3s() - Returns bool, outputs List<Vector3> containing all

matching Vector3 values

TryGetAllColors() - Returns bool, outputs List<Color> containing all matching

Color values

Behavior:

Returns true if successful (file/sheet exists), false otherwise
Outputs empty list if no matches found (but file/sheet exists)

Outputs empty list and returns false if file/sheet not found or invalid

All TryGetAll* methods support both single condition and multiple conditions:

// Single condition
bool TryGetAll[Type](fileName, sheetName, searchColumn, searchValue,
targetColumn, out List<[Type]> result)

// Multiple conditions
bool TryGetAll[Type](fileName, sheetName, Dictionary<string, string>

searchConditions, targetColumn, out List<[Type]> result)

When to Use TryGet vs Get:

= Use TryGet* when you want to handle missing data gracefully without exceptions

= Use Get* when you want exceptions to be thrown for error handling or when data

must exist

GetRow Method

SpreadsheetRow GetRow(string fileName, string sheetName, string

searchColumn, string searchValue)

Returns an SpreadsheetRow object that provides access to all columns in the matched

row. Use this when you need multiple values from the same row.

Note: This method returns only the first matching row. If multiple rows match the search
criteria, use GetAllRows() instead.

GetRow Method (Multiple Search Conditions)

SpreadsheetRow GetRow(string fileName, string sheetName,

Dictionary<string, string> searchConditions)

Search for a row using multiple conditions. All conditions must be satisfied (AND logic).

Note: Multiple condition search supports numeric-aware comparison. For example,
searching with "3" will match Spreadsheet values like "3.0" or "3" , and vice versa.

Example:

// Search with multiple conditions: HP = 100 AND Speed = 3
Dictionary<string, string> conditions = new Dictionary<string, string>
{

{ "HP", "100" },

{ "Speed", "3" }
s

SpreadsheetRow playerRow = SpreadsheetReader.GetRow("PlayerConfig",
"Players", conditions);

if (playerRow != null)

{
string name = playerRow.GetString("Name");
int hp = playerRow.GetInt("HP");
float speed = playerRow.GetFloat("Speed");
Debug.Log($"Player: {name}, HP: {hp}, Speed: {speed}");
¥

GetAllIRows Method (Multiple Matches)

When multiple rows match your search criteria (e.g., multiple players with HP = 100), use
GetAl1lRows() to get all matching rows:

List<SpreadsheetRow> GetAllRows(string fileName, string sheetName,

string searchColumn, string searchValue)

Example:

// Get all players with HP = 100
List<SpreadsheetRow> playerRows =
SpreadsheetReader.GetAl1Rows("PlayerConfig", "Players", "HP", "100");

foreach (SpreadsheetRow row in playerRows)

{
string name = row.GetString("Name");
int hp = row.GetInt("HP");
Debug.Log($"Player: {name}, HP: {hp}");
ks

GetAllIRows Method (Multiple Search Conditions)

List<SpreadsheetRow> GetAllRows(string fileName, string sheetName,

Dictionary<string, string> searchConditions)

Get all rows matching multiple conditions. All conditions must be satisfied (AND logic).

Note: Multiple condition search supports numeric-aware comparison. For example,
searching with "3" will match Spreadsheet values like "3.0" or "3" , and vice versa.

Example:

// Get all players with HP = 100 AND Speed = 3
Dictionary<string, string> conditions = new Dictionary<string, string>

{
{ "HP", "100" },
{ "Speed", "3" }
i

List<SpreadsheetRow> playerRows =

SpreadsheetReader.GetAl1Rows("PlayerConfig", "Players", conditions);

foreach (SpreadsheetRow row in playerRows)

{

string name = row.GetString("Name");

int hp = row.GetInt("HP");

float speed = row.GetFloat("Speed");
Debug.Log($"Player: {name}, HP: {hp}, Speed: {speed}");

GetAll Methods (Multiple Values)

For convenience, you can also get all matching values from a specific column directly:

Note: All GetAll* methods throw exceptions when the file/sheet is not found. If you want
to avoid exception handling, use the corresponding TryGetAll* methods (e.g.,
TryGetAllStrings() , TryGetAllInts() , TryGetAllEnums<T>() , etc.) which are
available for all data types.

// Get all string values
List<string> GetAl1lStrings(string fileName, string sheetName, string

searchColumn, string searchValue, string targetColumn)

// Get all int values
List<int> GetAllInts(string fileName, string sheetName, string

searchColumn, string searchValue, string targetColumn)

// Get all float values
List<float> GetAllFloats(string fileName, string sheetName, string

searchColumn, string searchValue, string targetColumn)

// Get all double values
List<double> GetAllDoubles(string fileName, string sheetName, string

searchColumn, string searchValue, string targetColumn)

// Get all bool values
List<bool> GetAllBools(string fileName, string sheetName, string

searchColumn, string searchValue, string targetColumn)

// Get all Enum values (returns all matching results as List<T>)

// Important: Use GetAllEnums<T>() instead of GetEnum<T>() when you need
all matching results

// Note: GetAllEnums<T>() throws exceptions when file/sheet not found

// Use TryGetAllEnums<T>() to avoid exception handling

List<T> GetAllEnums<T>(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn) where T : struct,

Enum

// Try to get all Enum values (no exception handling needed)

// Returns true if successful, false otherwise

// Outputs List<T> containing all matching Enum values (empty list if no
matches found)

bool TryGetAllEnums<T>(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn, out List<T>

result) where T : struct, Enum

// Get all Vector3 values
List<Vector3> GetAllVector3s(string fileName, string sheetName, string

searchColumn, string searchValue, string targetColumn)

// Get all Color values
List<Color> GetAllColors(string fileName, string sheetName, string

searchColumn, string searchValue, string targetColumn)

Example:

// Get all player names with HP = 100
List<string> playerNames =
SpreadsheetReader.GetAl1Strings("PlayerConfig", "Players", "HP", "100",

"Name");

// Get all HP values where Name = "Playerl"
List<int> hps = SpreadsheetReader.GetAllInts("PlayerConfig", "Players",
"Name", "Playerl", "HP");

// Get all Enum values
// Note: GetEnum<T>() returns only the first matching result
// GetAl1lEnums<T>() returns all matching results as List<T>
public enum PlayerRarity { Common, Rare, Epic, Legendary }
List<PlayerRarity> rarities =
SpreadsheetReader.GetAl1Enums<PlayerRarity>("PlayerConfig", "Players",
"HP", "100", "Rarity");
foreach (PlayerRarity rarity in rarities)
{

Debug.Log($"Player Rarity: {rarity}");

// Using TryGetAllEnums (no exception handling needed)
1f (SpreadsheetReader.TryGetAllEnums<PlayerRarity>("PlayerConfig",
"Players", "HP", "100", "Rarity", out List<PlayerRarity> rarities2))
{

Debug.Log($"Found {rarities2.Count} matching rarities");

foreach (PlayerRarity rarity in rarities2)

{
Debug.Log($"Player Rarity: {rarity}");
by
ks
else
{
Debug.Log("Failed to get Enum values");
by

GetAll Methods (Multiple Search Conditions)

All GetAl1l* methods support multiple search conditions:

// Get all string values with multiple conditions
List<string> GetAllStrings(string fileName, string sheetName,

Dictionary<string, string> searchConditions, string targetColumn)

// Get all int values with multiple conditions

List<int> GetAllInts(string fileName, string sheetName,

Dictionary<string, string> searchConditions, string targetColumn)

// Get all float values with multiple conditions
List<float> GetAllFloats(string fileName, string sheetName,

Dictionary<string, string> searchConditions, string targetColumn)

// Get all double values with multiple conditions
List<double> GetAllDoubles(string fileName, string sheetName,

Dictionary<string, string> searchConditions, string targetColumn)

// Get all bool values with multiple conditions
List<bool> GetAllBools(string fileName, string sheetName,

Dictionary<string, string> searchConditions, string targetColumn)

// Get all Enum values with multiple conditions

// Note: GetAllEnums<T>() throws exceptions when file/sheet not found
// Use TryGetAllEnums<T>() to avoid exception handling

List<T> GetAllEnums<T>(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn) where

T : struct, Enum

// Try to get all Enum values with multiple conditions (no exception
handling needed)

bool TryGetAllEnums<T>(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn, out

List<T> result) where T : struct, Enum

// Get all Vector3 values with multiple conditions
List<Vector3> GetAllVector3s(string fileName, string sheetName,

Dictionary<string, string> searchConditions, string targetColumn)

// Get all Color values with multiple conditions
List<Color> GetAllColors(string fileName, string sheetName,

Dictionary<string, string> searchConditions, string targetColumn)

Example:

// Create search conditions
Dictionary<string, string> conditions = new Dictionary<string, string>
{
{ "HP", "100" },
{ "Speed", "3" }
¥

// Get all player names with HP = 100 AND Speed = 3
List<string> playerNames =
SpreadsheetReader.GetAl1Strings("PlayerConfig", "Players", conditions,

"Name");

// Get all levels with HP = 100 AND Speed = 3
List<int> levels = SpreadsheetReader.GetAllInts("PlayerConfig",

"Players", conditions, "Level");

// Get all Enum values with multiple conditions

// Note: GetEnum<T>() returns only the first matching result

// GetAl1lEnums<T>() returns all matching results as List<T>
public enum PlayerRarity { Common, Rare, Epic, Legendary }
List<PlayerRarity> rarities =
SpreadsheetReader.GetAl1Enums<PlayerRarity>("PlayerConfig", "Players",

conditions, "Rarity");

// Using TryGetAllEnums with multiple conditions (no exception handling
needed)
if (SpreadsheetReader.TryGetAllEnums<PlayerRarity>("PlayerConfig",
"Players", conditions, "Rarity", out List<PlayerRarity> rarities2))
{

Debug.Log($"Found {rarities2.Count} matching rarities™);

foreach (PlayerRarity rarity in rarities2)

{
Debug.Log($"Player Rarity: {rarity}");

else

Debug.Log("Failed to get Enum values");

// Example: Process all Enum values

foreach (PlayerRarity rarity in rarities)

{
switch (rarity)

{

case PlayerRarity.Common:

Debug.Log("Player Rarity:

break;

case PlayerRarity.Rare:

Debug.Log("Player Rarity:

break;

case PlayerRarity.Epic:

Debug.Log("Player Rarity:

break;

case PlayerRarity.Legendary:

Debug.Log("Player Rarity:

break;

JSON Export Methods

Common");

Rare");

Epic");

Legendary");

// Get single row as JSON (throws KeyNotFoundException if row not found)
string rowJson = SpreadsheetReader.GetRow]son("PlayerConfig", "Players",
"IDH , llP@Olll);

// Get entire table as JSON array (returns "[]" if file/sheet not found
or empty)

string tableJson = SpreadsheetReader.GetTableJson("PlayerConfig",
"Players");

Note:

= GetRowJson() throws exceptions when the row is not found (same behavior as other
Get methods)

= GetTablelson() returns "[]" (empty JSON array) if the file or sheet is not found, or
if the sheet is empty (does not throw exceptions)

Utility Methods

// Load all Spreadsheet files and rebuild indices (called automatically
on first access)

SpreadsheetReader.LoadAllSpreadsheet();

// Manually rebuild indices (useful after clearing index cache)
SpreadsheetReader.RebuildIndices();

// Clear only index cache (keeps data loaded)
SpreadsheetReader.(ClearIndexCache();

// Clear all cache (data + indices)
SpreadsheetReader.ClearCache();

Spreadsheet File Format Requirements

1. First row must be headers (column names)
2. Column names are case-insensitive

3. Empty cells return default values (empty string for strings, 0 for numbers, false for
bool, empty arrays for arrays, etc.) when the row is found. If the row is not found,

methods throw exceptions.

4. Supported formats: .xlsx, .xls

Error Handling

SpreadsheetEasy provides two approaches for error handling:
Approach 1: TryGet Methods (Recommended for Missing Data)

Use TryGet* methods when you want to handle missing data gracefully without

exceptions:

// Clean code without try-catch
1f (SpreadsheetReader.TryGetInt("PlayerConfig", "Players", "ID", "P0O1",
"HP", out int hp))

{
Debug.Log($"Player HP: {hp}");

}

else

{
Debug.Log("HP not found or invalid format");

Benefits:

= No try-catch blocks needed
= Explicit success/failure indication

= Cleaner, more readable code

Approach 2: Get Methods with Exception Handling

All Get* methods throw exceptions on error instead of returning default values. Use try-
catch blocks to handle errors:

try
{

int hp = SpreadsheetReader.GetInt("PlayerConfig", "Players", "ID",
"PO@1", "HP");

Debug.Log($"Player HP: {hp}");

¥
catch (FileNotFoundException ex)
{
Debug.LogError($"Spreadsheet file not found: {ex.Message}");
by
catch (KeyNotFoundException ex)
{
Debug.LogWarning($"Row not found: {ex.Message}");
¥
catch (ArgumentException ex)
{
Debug.LogError($"Invalid argument: {ex.Message}");
by
catch (FormatException ex)
{
Debug.LogError($"Format error: {ex.Message}");
¥

Exception Types:

= FileNotFoundException : Spreadsheet file not found
= ArgumentException : Invalid parameters (e.g., column not found, sheet not found)
= TInvalidOperationException : Operation failed (e.g., sheet is empty)

= KeyNotFoundException : No matching row found

= FormatException : Value format error (e.g., cannot parse string to int)

= TIndexOutOfRangeException : Index out of range (SpreadsheetRow only)

When to Use Each Approach:

= Use **TryGet*** methods: When data may not exist and you want to handle it

gracefully (e.g., optional configuration, user-generated content)

= Use **Get*** methods: When data must exist and exceptions should be thrown

(e.g., critical game data, configuration that must be present)

Example: Using TryGet to check if value exists:

// Using TryGet (no try-catch needed)
if (SpreadsheetReader.TryGetString("PlayerConfig", "Sheetl", "ID",
"999", "Name", out string value))

{
Debug.Log($"Value found: {value}");
by
else
{
Debug.Log("Value not found!");
ks

// Using Get with try-catch (alternative approach)
try
{
string value = SpreadsheetReader.GetString("PlayerConfig", "Sheetl"
"ID", "999", "Name");
Debug.Log($"Value found: {value}");
by
catch (KeyNotFoundException)

{
Debug.Log("Value not found!");

Advanced Usage
SpreadsheetEasy Settings

SpreadsheetEasy provides a settings system that allows you to configure how Spreadsheet
files are loaded at runtime. The settings are stored in a ScriptableObject asset located at

Assets/Resources/SpreadsheetEasySettings.asset .
Accessing Settings

To access or create the settings:

1. Via Menu: Assets — (Create — Spreadsheet Easy — Settings

2. Via Code: The settings are automatically loaded from

Resources/SpreadsheetEasySettings.asset at runtime
Loading Mode

The LoadingMode setting determines how Spreadsheet files are loaded:
RuntimeParsing (Default):

= Parse Spreadsheet files at runtime from StreamingAssets folder
= Files are parsed on first access and cached for subsequent queries

= Best for: Development, testing, or when Spreadsheet files need to be updated without
rebuilding

= Requires: Spreadsheet files in StreamingAssets folder
ScriptableObject (Performance Mode):

= | oad pre-baked ScriptableObject assets for zero parsing cost
= Spreadsheet files are converted to ScriptableObject assets at build time
= Best for: Production builds where maximum performance is required

= Requires: Spreadsheet source folder configured in settings, ScriptableObject assets
generated before build

Configuring Settings

1. Create or open SpreadsheetEasySettings.asset (via menu: Assets — Create —

Spreadsheet Easy — Settings)
2. Select the desired Mode :
= RuntimeParsing: Parse Spreadsheet files at runtime (default)
= ScriptableObject: Use pre-baked ScriptableObject assets
3. If using ScriptableObject mode:

= Set Spreadsheet Source Folder to the folder containing your Spreadsheet

files

= ScriptableObject assets will be automatically generated from Spreadsheet files
in this folder and saved to Resources/SpreadsheetEasyBaked folder

= Important: If Spreadsheet Source Folder is not set, ScriptableObject assets
will NOT be auto-generated

How Loading Mode Affects Behavior

RuntimeParsing Mode:

= LoadAllSpreadsheet() loads all Spreadsheet files from StreamingAssets folder
= Files are parsed on first access if not preloaded

= Data is cached in memory after first load

ScriptableObject Mode:

LoadAl1Spreadsheet() skips StreamingAssets loading

= Files are loaded on-demand from Resources/SpreadsheetEasyBaked folder as
ScriptableObject assets

= No parsing overhead - data is already serialized in Unity's binary format
= Faster load times, especially for large Spreadsheet files

= ScriptableObject assets are automatically generated when Spreadsheet files in the
source folder are added, modified, or deleted

Note: The API usage remains the same regardless of loading mode. All Get* , TryGet* ,

and GetRow methods work identically in both modes.

Runtime File Loading

At runtime, SpreadsheetEasy loads files from the StreamingAssets folder:

StreamingAssets folder: Automatically scanned when LoadAl1Spreadsheet() is called

Unity has only one StreamingAssets folder (Assets/StreamingAssets/)

Supports subdirectories within StreamingAssets

Files are accessible at runtime via file system

Files can be updated without rebuilding the application

SpreadsheetEasylndex.txt generation and fallback

= The index file StreamingAssets/SpreadsheetEasyIndex.txt is automatically
generated before builds by the AutoSpreadsheetIndexer
(IPreprocessBuildWithReport). You can also regenerate it manually via menu:

Tools — Spreadsheet Easy — Generate Spreadsheet Index (Recursive) .

= The index file is automatically regenerated whenever files in the StreamingAssets
folder are added, deleted, or moved. This is handled by the
SpreadsheetIndexAssetPostprocessor which monitors asset changes.
Performance optimizations are in place (debounce mechanism) to prevent
unnecessary regenerations during rapid file operations, so you don't need to worry
about performance impact.

= LoadAllSpreadsheet() uses SpreadsheetEasyIndex.txt to preload all
Spreadsheet files in one pass. If the file is missing or empty at runtime,
SpreadsheetEasy falls back to on-demand loading: the first access to a file performs
a direct load (slower once), and subsequent accesses use the cache. If the target
Spreadsheet file itself is missing, the first on-demand load will throw a file-not-found
error.

Best Practice:

= Place Spreadsheet files in StreamingAssets folder for runtime access

= Organize files in subdirectories within StreamingAssets for better file management
Loading from Subdirectories

If your Spreadsheet files are organized in subdirectories within the StreamingAssets folder,
you can use the file name (without extension) or the relative path (without extension) when
querying:

// File location: StreamingAssets/MyTable/EnemyData.x1lsx

// You can use just the file name (no extension needed):

string enemyName = SpreadsheetReader.GetString("EnemyData", "Sheetl",
"ID", "POOQ1", "Name");

// Or use the relative path (no extension needed):
string enemyName = SpreadsheetReader.GetString("MyTable/EnemyData",
"Sheetl", "ID", "P0O@1", "Name");

// File location: StreamingAssets/GameData/Items.x1lsx

int itemSpeed = SpreadsheetReader.GetInt("Items", "Items", "ItemID",
"sword_0Q1", "Speed");

// Or: SpreadsheetReader.GetInt("GameData/Items", "Items", "ItemID",
"sword_0Q1", "Speed");

// File location: StreamingAssets/Config/Levels/Stagel.xlsx

float difficulty = SpreadsheetReader.GetFloat("Stagel", "Settings",
"Key", "difficulty", "Value");

// Or: SpreadsheetReader.GetFloat("Config/Levels/Stagel"”, "Settings",
"Key", "difficulty", "Value");

Important:

= No extension needed: You don't need to include .x1lsx or .xls in the file name

parameter

= File names must be unique: SpreadsheetEasy uses file names (without path and

extension) as cache keys. If you have multiple files with the same name in different
folders, only the first one loaded will be accessible. See File Name Requirements for

details.

Tools
Spreadsheet Data JSON Checker

A standalone JSON validation tool that works independently and directly reads
Spreadsheet files. This tool allows you to quickly validate JSON format in Spreadsheet files
from any folder in your project.

Access the Tool

= Menu Path: Tools — Spreadsheet Easy — Spreadsheet Data JSON Checker

= Opens an EditorWindow where you can select a folder to validate
Features

= Direct File Access: Works directly with Spreadsheet files, no pre-processing or setup
required

= Folder Selection: Drag and drop folders from Project window or use the object field
to browse

= Recursive Search: Automatically scans all subdirectories for Spreadsheet files

= Automatic JSON Detection: Detects columns containing JSON data by checking
rows 2-52

= Comprehensive Validation: Validates all JSON cells in detected columns

= Detailed Error Reporting: Shows file path, sheet name, row number, column name,
and error message for each invalid JSON cell

= Results Display: Validation results displayed directly in the EditorWindow with:

= Summary statistics (files checked, sheets checked, JSON cells validated, errors
found)

= Completion time and duration

= List of all checked files and their sheets

= Persistent Selection: Remembers your last selected folder for convenience
How to Use

1. Open the tool via Tools — Spreadsheet Easy — Spreadsheet Data JSON
Checker

2. Drag a folder from the Project window to the "Spreadsheet Folder" field, or click the
field to browse

3. Click "Validate JSON" button
4. Review the validation results in the window:
= Check the summary message for overall status
= View completion time and duration
= Expand "Checked Files and Sheets" to see all processed files

= Check Console for detailed error messages if any errors are found
Validation Process

The tool automatically:

1. Scans the selected folder and all subdirectories for .x1sx and .xls files
2. Reads each Spreadsheet file and processes all sheets

3. Detects JSON columns by checking if cells in rows 2-52 contain JSON-like content
(starts with { or [)

4. Validates all non-empty cells in detected JSON columns

5. Reports any JSON format errors with detailed location information
Error Messages
When JSON validation errors are found, the tool provides:

= File Path: Assets-relative path to the Spreadsheet file

= Sheet Name: Name of the sheet containing the error

Column Name: Header name of the column

Error Message: Specific JSON validation error

All errors are logged to the Unity Console for easy review and debugging.

Use Cases

Row Number: 1-based row number (for user-friendly display)

Cell Value: Truncated cell content (first 200 characters)

= Quick Validation: Quickly check JSON format in Spreadsheet files with no setup

required

= Batch Validation: Validate multiple Spreadsheet files in a folder at once

= Pre-commit Checks: Verify JSON format before committing changes

= Troubleshooting: Identify JSON format errors when Spreadsheet data fails to parse

correctly

Performance Optimization

SpreadsheetEasy includes a powerful Index Cache System that provides 50-100x

speedup for frequent data access.

Benchmark Results

Based on tests with a 1000-row Spreadsheet file:

Operation Without Index
Single Query ~0.5ms
1000 Queries ~500ms

GetRow (multiple columns) ~1.5ms

With Index

~0.01ms

~10ms

~0.02ms

Speedup
50x faster
50x faster

75x faster

How It Works

—

. Column Index Cache: Column names mapped to indices (O(1) lookup)

. Row Index Cache: Search results cached for instant retrieval

2
3. Lazy Loading: Indices built only when needed
4

. Automatic: Works automatically, no code changes required

Recent Performance Improvements

SpreadsheetEasy has been significantly optimized for large Spreadsheet files:

= Pre-built SharedString Lookup: O(1) access instead of O(n) per cell lookup

= Optimized Column Index Parsing: Eliminated string concatenation overhead

= Large File Support: Spreadsheet files with 5000+ rows now process in milliseconds

instead of tens of seconds

Performance API

// Load all Spreadsheet files (automatically rebuilds indices)
SpreadsheetReader.LoadAllSpreadsheet();

// Manually rebuild all indices (useful after clearing index cache)
SpreadsheetReader.RebuildIndices();

// Get cache statistics for monitoring
SpreadsheetReader.CacheStats stats = SpreadsheetReader.GetCacheStats();
Debug.Log(stats.ToString());

//
//
//
//
//
//
//

CacheStats structure contains:

DataFileCount: Number of cached Spreadsheet files
DataSheetCount: Total number of cached sheets
DataRowCount: Total number of data rows
DataColumnCount: Total number of columns
ColumnIndexCount: Number of column index entries

RowIndexCount: Number of row index entries

// - EstimatedMemoryBytes: Estimated memory usage in bytes

//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//

SpreadsheetReader.ShowCacheTrackinglogs = true;

Example output of stats.ToString():
——eeee—r— ((@die SHHTLSELES meeee—e—
Data Cache:

Files: 3

Sheets: 5

Total Rows: 1,250

Total Columns: 120

Average Rows per Sheet: 250.0

Average Columns per Sheet: 24.0

Index Cache:
Column Index Maps: 5
Row Index Entries: 450

Memory Usage:
Estimated Memory: 125KB

Cache hit tracking (diagnostic)

cache hit/miss logs
SpreadsheetReader.CacheHitStats hitStats =
SpreadsheetReader.GetCacheHitStats();

Debug.Log(hitStats.ToString());

hit rates
SpreadsheetReader.ResetCacheHitStats();

//

//
//
//
//
//

Example output of hitStats.ToString():
========== (Cdche Hit Statistics ==========
Row Index Cache:

Hits: 4

Misses: 1

Total Queries: 5

Hit Rate: 80.0%

// Enable detailed

// Row/column index cache

// Reset counters

//
// Column Index Cache:

// Hits: 18

// Misses: 4

// Total Queries: 22

// Hit Rate: 81.8%

//

// Overall Statistics:

// Total Queries: 27

// Total Hits: 22

// Total Misses: 5

// Overall Hit Rate: 81.5%
//

// Clear only indices (keep data loaded)
SpreadsheetReader.(ClearIndexCache();

// Clear everything (data + indices)
SpreadsheetReader.ClearCache();

Best Practices

DO: Load Data at Startup

public class GameManager : MonoBehaviour

{
void Awake()
{
// LoadAll1lSpreadsheet automatically rebuilds indices for optimal
performance
SpreadsheetReader.LoadAl1lSpreadsheet();
Debug.Log("Spreadsheet data loaded!");
by

Note: LoadAllSpreadsheet() automatically rebuilds indices, so you don't need to call

RebuildIndices() separately unless you've cleared the index cache.

DO: Use GetRow for Multiple Columns

// Bad: Multiple queries for same row (slow)

string name = SpreadsheetReader.GetString("Items", "Sheetl", "ID",
"1001", "Name");

int hp = SpreadsheetReader.GetInt("Items", "Sheetl", "ID", "1001",
"HP");

float speed = SpreadsheetReader.GetFloat("Items", "Sheetl", "ID",
"1001", "Speed");

// Good: GetRow once, access multiple columns (75x faster)
SpreadsheetRow row = SpreadsheetReader.GetRow("Items", "Sheetl", "ID",
"1001");

string name = row.GetString("Name");

int hp = row.GetInt("HP");

float speed = row.GetFloat("Speed");

DO: Use in Update() - It's Fast Enough!

// Good: With index cache, queries are extremely fast (~0.005ms)
void Update()
{

// Safe to use in Update! Only ~@.005ms per query

int hp = SpreadsheetReader.GetInt("Players", "Sheetl", "ID", "P0OO1",
"HP");

float speed = SpreadsheetReader.GetFloat("PlayerConfig", "Settings",
"Key", "speed", "Value");

// 6@ FPS = 16.67ms per frame

// You can do ~3000 queries per frame before performance issues!

// Even better: Cache SpreadsheetRow for multiple columns

SpreadsheetRow _playerRow;

void Start()

{

_playerRow = SpreadsheetReader.GetRow("Players", "Sheetl", "ID",
"POOL1");

}

void Update()

{

// Extremely fast! Just memory access

int hp = _playerRow.GetInt("HP");

float speed = _playerRow.GetFloat("Speed");
ks

DO: Cache Frequently Used Data

public class ItemDatabase : MonoBehaviour
{
private Dictionary<string, SpreadsheetRow> _itemCache = new

Dictionary<string, SpreadsheetRow>();

public SpreadsheetRow GetItem(string itemld)
{
if (!_itemCache.ContainsKey(itemId))
{
_itemCache[itemId] = SpreadsheetReader.GetRow("Items"
"Sheetl", "ID", itemld);

}

return _itemCache[itemId];

CAUTION: Extremely Large Loops (1000+)

For very large datasets (1000+ items per frame), consider pre-caching:

// Still works, but not optimal: 1000 queries x 0.005ms = 5ms per frame
void Update()
{
for (int 1 = 0; 1 < 1000; i++)
{
string name = SpreadsheetReader.GetString("Items", "Sheetl",
"ID", 1i.ToString(), "Name");

ProcessItem(name);

// Better for extreme cases: Pre-cache for maximum performance

Dictionary<int, SpreadsheetRow> _items;

void Start()
{

// Load all items once (1000 queries x ©@.005ms = 5ms, one-time cost)

_items = new Dictionary<int, SpreadsheetRow>();

for (int 1 = 0; 1 < 1000; i++)

{

_items[i] = SpreadsheetReader.GetRow("Items", "Sheetl", "ID",

1.ToString());

}

void Update()
{
// 50x faster: Dictionary lookup ~0.0001ms x 1000 = @.1lms per frame
for (int 1 = 0; 1 < 1000; 1i++)
{
string name = _items[i].GetString("Name");

ProcessItem(name);

Note: For loops with < 100 iterations, the cached version (5ms) is already fast enough for
most games!

DON'T: Clear Cache Unnecessarily

// Bad: (Clears cache every frame
void Update()

{

SpreadsheetReader.ClearCache();

int hp = SpreadsheetReader.GetInt("Items", "Sheetl", "ID", "1001",
"HP");
by

// Good: Cache persists across frames
void Start()

{

SpreadsheetReader.LoadAllSpreadsheet(); // Automatically rebuilds
indices
¥

void Update()

{
int hp = SpreadsheetReader.GetInt("Items", "Sheetl", "ID", "1001",
"HP"); // Fast!

}

Memory Usage
For a typical Spreadsheet file with 1000 rows and 20 columns:

= Column Index Cache: ~2 KB per sheet

= Row Index Cache: ~50 KB per sheet

= Total Overhead: ~52 KB per sheet (minimal!)
Performance Testing
Use SpreadsheetEasyPerformanceTest.cs to benchmark your data:
1. Open Assets/SpreadsheetEasy/Examples/SpreadsheetEasyPerformanceTest.unity

Example output:

[SpreadsheetEasy] Speedup: 51.57x faster
[SpreadsheetEasy] Time saved: 477.87ms (98.1%)

Advanced Optimization Strategies

For very large datasets (10,000+ rows), consider these strategies:

1. Partition Data: Split into multiple sheets by category
Lazy Loading: Load sheets only when needed

Application Cache: Cache SpreadsheetRow objects at application level

= ke Y

Preload Critical Data: Use RebuildIndices() for frequently accessed sheets

Example: Lazy Loading with Application Cache

public class DataManager : MonoBehaviour

{
private Dictionary<string, Dictionary<string, SpreadsheetRow>>
_cache;
void Awake()
{
_cache = new Dictionary<string, Dictionary<string,
SpreadsheetRow>>();

}

public SpreadsheetRow GetData(string sheetName, string id)
{

// Ensure sheet cache exists

if (!_cache.ContainsKey(sheetName))

{

_cache[sheetName] = new Dictionary<string, SpreadsheetRow>

QK

// Check application cache
1f (!_cache[sheetName].ContainsKey(id))
{
// Query SpreadsheetReader (uses index cache)
_cache[sheetName][1d] = SpreadsheetReader.GetRow("GameData",
sheetName, "ID", 1id);
ks

return _cache[sheetName][1id];

Troubleshooting

Q: Spreadsheet files not loading
A: Make sure your Spreadsheet files are placed in StreamingAssets folder, and call

LoadAl1lSpreadsheet() at startup. Check the Console for any error messages.

Q: Example scenes cannot run or show errors

A: If example scenes cannot execute, it may be because the example Spreadsheet files are
missing from the StreamingAssets folder. Example files are automatically copied to the
StreamingAssets folder when you first import the asset. If the automatic copy did not occur,
or you accidentally deleted the example files, you can manually execute the menu item
Tools — Spreadsheet Easy — Copy Example Files To StreamingAssets to copy all
example Spreadsheet files to the StreamingAssets folder.

Note: The original example files are stored in
Assets/SpreadsheetEasy/Examples/SpreadsheetExamples . If you don't need the

example files for the demo scenes, you can safely delete the
Assets/StreamingAssets/SpreadsheetExamples folder. When you need them again,

simply execute the menu item Tools — Spreadsheet Easy — Copy Example Files To

StreamingAssets once to restore the example files.

Q: Queries are still slow
A: Make sure you're not clearing cache unnecessarily. Check for ClearCache() or
ClearIndexCache() calls in your code. Alternatively, you can use ScriptableObject mode

for better performance:

1. Open SpreadsheetEasySettings.asset (via menu: Tools — Spreadsheet Easy

— Settings)
2. Change Mode to ScriptableObject
3. Set Spreadsheet Source Folder to your Spreadsheet files folder

4. ScriptableObject assets will be automatically generated, providing zero parsing cost

at runtime

Q: How do | switch between RuntimeParsing and ScriptableObject modes?
A: You can switch modes using the Settings ScriptableObject:

1. Open SpreadsheetEasySettings.asset via menu: Tools — Spreadsheet Easy
— Settings
2. Change the Mode dropdown to your desired mode:

= RuntimeParsing: Parse Spreadsheet files at runtime from StreamingAssets
(default)

= ScriptableObject: Load pre-baked ScriptableObject assets for zero parsing

cost

3. If switching to ScriptableObject mode, make sure to set Spreadsheet Source

Folder to your Spreadsheet files folder

4. The settings are automatically loaded at runtime, so you can switch modes without

code changes

Q: Memory usage is high
A: Use (ClearIndexCache() to free index memory while keeping data loaded. Or use

application-level caching with selective loading.

Q: First query is slow
A: Make sure you call LoadAllSpreadsheet() at startup. It automatically rebuilds indices

for optimal performance.

Q: How do | know if index cache is working?
A: Use SpreadsheetEasyPerformanceTest to measure performance. You should see 50-

100x speedup.

Q: Crash on iOS build with System.ExecutionEngineException
A: This is caused by Code Stripping removing necessary assemblies. You must provide a
link.xml file in your plugin root directory to prevent stripping of required assemblies.

Create a file named 1link.xml in Assets/SpreadsheetEasy/ (or your plugin root

directory) with the following content:

<linker>
<assembly fullname="ExcelDataReader" preserve="all"/>

</linker>

This prevents Unity's code stripper from removing required types and methods, which can
cause crashes on iOS builds.

Q: Multiple precompiled assemblies with the same name error
A: This error occurs when multiple plugins in your project include the same DLL (e.g.,
ExcelDataReader.dll). If you encounter this error, please delete the ExcelDataReader.dll

from this asset's folder and use the one already in your project.

To fix:

1. Locate the ExcelDataReader.dll in Assets/SpreadsheetEasy/ExcelDataReader/ (or

similar location in this asset)

2. Delete or remove it from the project

3. Use the ExcelDataReader.dll that is already present in another plugin or in your project

Performance Test Example Output

[SpreadsheetEasy]]
[SpreadsheetEasy]]
[SpreadsheetEasy]]
[SpreadsheetEasy]]

[SpreadsheetEasy]]
[SpreadsheetEasy]]
[SpreadsheetEasy]]

[SpreadsheetEasy]]
[SpreadsheetEasy]]
[SpreadsheetEasy]]

[SpreadsheetEasy]
[SpreadsheetEasy]
[SpreadsheetEasy]
[SpreadsheetEasy]

Starting performance test...
File: GameData, Sheet: Items
Query: ID='1001" -> Name
Query count: 1000

Test 1: Without index cache (clearing cache each time)
Time without index: 487.32ms
Average per query: 0.4873ms

Test 2: With index cache (indices cached and reused)
Time with index: 9.45ms

Average per query: 0.0095ms

PERFORMANCE RESULTS
Speedup: 51.57x faster
Time saved: 477.87ms (98.1%)

Examples

Two example scenes are provided to help you get started with SpreadsheetEasy:

SpreadsheetEasyDemo.unity

A comprehensive demo scene that demonstrates all basic features of SpreadsheetEasy.
This scene includes:

Location: Assets/SpreadsheetEasy/Examples/SpreadsheetEasyDemo.unity

Script: SpreadsheetEasyDemo.cs

Features Demonstrated:

1. Single Value Reading: Read individual values (string, int, float, bool, Enum) from
Spreadsheet

2. Multiple Values from Same Row: Use SpreadsheetRow to efficiently retrieve

multiple columns

3. Different Data Types: Examples for Vector3, Color, arrays (int , float , string]]),
and Enum

4. Multiple Rows Query: Get all rows matching a search condition using GetAl1Rows()

5. Multiple Search Conditions: Query with multiple conditions using

Dictionary<string, string>

6. TryGet Methods: Clean error handling without try-catch blocks

~

. Enum Support: Read Enum values from Spreadsheet with case-insensitive string
parsing or integer values

How to Use:

—

. Open Assets/SpreadsheetEasy/Examples/SpreadsheetEasyDemo.unity in Unity

2. Make sure example Spreadsheet files are in StreamingAssets folder (see

Troubleshooting if files are missing)

e

Play the scene and check the Console for output

4. Examine SpreadsheetEasyDemo.cs to see code examples for each feature
Example Spreadsheet File: Uses PlayerConfig.x1lsx with sheet Players

SpreadsheetEasyPerformanceTest.unity

A performance testing scene that demonstrates the speedup provided by
SpreadsheetEasy's index cache system.

Location: Assets/SpreadsheetEasy/Examples/SpreadsheetEasyPerformanceTest.unity

Script: SpreadsheetEasyPerformanceTest.cs

Features:

1. Performance Benchmarking: Compare query performance with and without index
cache

2. GetRow Performance Test: Measure performance when accessing multiple columns

3. Cache Statistics: Display detailed cache statistics (files, sheets, rows, columns,
memory usage)

4. Benchmark Comparison: Compare GetString vs GetRow for multiple column

access
How to Use:
1. Open

Assets/SpreadsheetEasy/Examples/SpreadsheetEasyPerformanceTest.unity in

Unity

2. Select the SpreadsheetEasyPerformanceTest GameObject in the scene
3. Configure test settings in the Inspector:

= TestFileName : Spreadsheet file name to test (e.g., "ltemConfig")

= TestSheetName : Sheet name to test (e.g., "ltems")

= SearchColumn : Column name to search (e.g., "Rarity")

= SearchValue : Value to find (e.g., "Rare")

= TargetColumn : Column to retrieve (e.g., "Name")

= QueryCount : Number of queries to perform (default: 1000)

4. Enable RunTestOnStart to run test automatically when scene starts, or use Context

Menu:
= Right-click the component — Run Performance Test
» Right-click the component — Test GetRow Performance
= Right-click the component — Show Cache Statistics
= Right-click the component — Benchmark: GetString vs GetRow

5. Check the Console for detailed performance results

Expected Results:

You should see 50-100x speedup when using index cache compared to clearing cache
each time. Example output:

[SpreadsheetEasy] ========== PERFORMANCE RESULTS ==========
[SpreadsheetEasy] Speedup: 51.57x faster

[SpreadsheetEasy] Time saved: 477.87ms (98.1%)
[SpreadsheetEasy]]

Example Spreadsheet File: Uses ItemConfig.xlsx with sheet Items

Example Spreadsheet Files

Example Spreadsheet files are located in
Assets/SpreadsheetEasy/Examples/SpreadsheetExamples/ and are automatically

copied to StreamingAssets/SpreadsheetExamples/ when you first import the asset.
If example files are missing, you can manually copy them using:
= Menu: Tools — Spreadsheet Easy — Copy Example Files To StreamingAssets

Note: In production environments, you can safely delete the
StreamingAssets/SpreadsheetExamples/ folder if you don't need the exampile files.

For more information, see the Troubleshooting section.

Notes

= Spreadsheet files must be placed in the StreamingAssets folder (or subdirectories
within it).
= Spreadsheet file names must be unique across all subdirectories (file names without

path/extension are used as cache keys).

= The first row of each sheet must contain column headers; data rows start from the
second row.

= Sheet names and column names are case-insensitive but must match exactly
(ignoring case).

Third-Party Licenses
ExcelDataReader

This asset uses ExcelDataReader, a lightweight and fast library written in C# for reading

Microsoft Spreadsheet files.

ExcelDataReader is licensed under the MIT License:

MIT License

Copyright (c) ExcelDataReader contributors

Permission is hereby granted, free of charge, to any person obtaining a
copy

of this software and associated documentation files (the "Software"), to
deal

in the Software without restriction, including without limitation the
rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE

https://github.com/ExcelDataReader/ExcelDataReader

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE

SOFTWARE .

For more information, visit: https://github.com/ExcelDataReader/ExcelDataReader

https://github.com/ExcelDataReader/ExcelDataReader

	SpreadsheetEasy
	Features
	Requirements
	Quick Start
	1. Setup
	2. Load Spreadsheet Files
	Important: File Name Requirements
	3. Basic Usage
	Example Spreadsheet Structure:
	4. SpreadsheetRow for Multiple Values
	5. Multiple Search Conditions

	API Reference
	GetValue Methods
	Parameters:
	Available Methods (Single Condition):
	Available Methods (Multiple Conditions):
	Available GetAll Methods (Multiple Values):

	TryGetValue Methods
	Parameters:
	Return Value:
	Available TryGet Methods (Single Condition):
	Available TryGet Methods (Multiple Conditions):
	Available TryGetAll Methods (Multiple Values):

	GetRow Method
	GetRow Method (Multiple Search Conditions)
	GetAllRows Method (Multiple Matches)
	GetAllRows Method (Multiple Search Conditions)
	GetAll Methods (Multiple Values)
	GetAll Methods (Multiple Search Conditions)
	JSON Export Methods
	Utility Methods

	Spreadsheet File Format Requirements
	Error Handling
	Approach 1: TryGet Methods (Recommended for Missing Data)
	Approach 2: Get Methods with Exception Handling

	Advanced Usage
	SpreadsheetEasy Settings
	Accessing Settings
	Loading Mode
	Configuring Settings
	How Loading Mode Affects Behavior

	Runtime File Loading
	SpreadsheetEasyIndex.txt generation and fallback
	Loading from Subdirectories

	Tools
	Spreadsheet Data JSON Checker
	Access the Tool
	Features
	How to Use
	Validation Process
	Error Messages
	Use Cases

	Performance Optimization
	Benchmark Results
	How It Works
	Recent Performance Improvements
	Performance API
	Best Practices
	DO: Load Data at Startup
	DO: Use GetRow for Multiple Columns
	DO: Use in Update() - It's Fast Enough!
	DO: Cache Frequently Used Data
	CAUTION: Extremely Large Loops (1000+)
	DON'T: Clear Cache Unnecessarily

	Memory Usage
	Performance Testing
	Advanced Optimization Strategies
	Example: Lazy Loading with Application Cache

	Troubleshooting
	Performance Test Example Output

	Examples
	SpreadsheetEasyDemo.unity
	SpreadsheetEasyPerformanceTest.unity
	Example Spreadsheet Files

	Notes
	Third-Party Licenses
	ExcelDataReader

