
SpreadsheetEasy

SpreadsheetEasy is a powerful Unity asset that simplifies reading and accessing
Spreadsheet files (.xlsx, .xls) in your Unity projects. It provides an intuitive API for querying
Spreadsheet data by column names, making it perfect for game configuration files,
localization data, and other data-driven content.

Features

Easy Spreadsheet Access: Read Spreadsheet files with simple API calls

Type-Safe Queries: Query data by column names instead of cell coordinates

Multiple Data Types: Support for string, int, float, double, Vector3, Color, and arrays

TryGet API: Clean error handling without try-catch blocks - returns bool and outputs
result via out parameter

Row-Based Access: Get entire rows as SpreadsheetRow objects for efficient
multiple value retrieval

JSON Export: Convert Spreadsheet data to JSON format for easy integration

Runtime & Editor Support: Works in both Editor and runtime builds

High Performance: Index cache system provides 50-100x speedup for frequent
queries

Automatic Caching: Data and indices are cached after first load for optimal
performance

JSON Validation: Validate JSON format in Spreadsheet cells with automatic
detection and comprehensive error reporting

Spreadsheet Data JSON Checker: Standalone JSON validation tool that validates
JSON format in Spreadsheet files directly from any folder

Requirements

Unity 2020.3 or later

ExcelDataReader (included)

Quick Start

1. Setup

Place your Spreadsheet files (.xlsx or .xls) in the StreamingAssets folder:

StreamingAssets Folder

Create a StreamingAssets folder: Assets/StreamingAssets/

Unity supports only one StreamingAssets folder, but you can organize files in
subdirectories

Place Spreadsheet files directly in Assets/StreamingAssets/ or any subdirectory

Example:

Assets/StreamingAssets/Config.xlsx (or .xls)

Assets/StreamingAssets/GameData/Items.xlsx (or .xls)

Assets/StreamingAssets/GameData/Enemies.xls (or .xlsx)

2. Load Spreadsheet Files

In your code, call LoadAllSpreadsheet() to load all Spreadsheet files:

Optional - Lazy Loading: If you have many Spreadsheet files and don't want to load them
all at once, you can skip calling LoadAllSpreadsheet() . When you use any query method
(like GetInt() , GetRow() , etc.), SpreadsheetEasy will automatically load the required file
on first access and cache it for subsequent queries. The first read operation will be slightly
slower, but all subsequent queries will use the cached data for optimal performance.

using SpreadsheetEasy;

void Awake()
{
 // Load all Spreadsheet files from StreamingAssets
 SpreadsheetReader.LoadAllSpreadsheet();
}

Note: LoadAllSpreadsheet() automatically scans:

StreamingAssets folder (including subdirectories) - Works in both Editor and
Runtime

Unity has only one StreamingAssets folder (Assets/StreamingAssets/)

You can organize files in subdirectories within StreamingAssets

Important: File Name Requirements

WARNING: File names must be unique across all subdirectories!

SpreadsheetEasy uses file names (without path and extension) as cache keys. This means:

Allowed: Different paths, same file name

StreamingAssets/Config/PlayerConfig.xlsx → cached as "PlayerConfig"

StreamingAssets/GameData/PlayerConfig.xlsx → cached as
"PlayerConfig" (CONFLICT!)

If you have multiple Spreadsheet files with the same name in different subdirectories,
only the first one loaded will be accessible. The later files will be ignored or overwrite
the cache!

Best Practice: Ensure all Spreadsheet file names are unique, regardless of their folder
location:

OK: StreamingAssets/Config/PlayerConfig.xlsx and
StreamingAssets/GameData/EnemyConfig.xlsx (different names)

OK: StreamingAssets/Config/PlayerConfig.xlsx and
StreamingAssets/GameData/PlayerData.xlsx (different names)

ERROR: StreamingAssets/Config/Config.xlsx and
StreamingAssets/GameData/Config.xlsx (same name - conflict!)

File Name Normalization: SpreadsheetEasy automatically normalizes file names by
removing paths and extensions:

ID Name Rarity HP Speed Position Rotation Color Items Scores Tags Active

001 Player1 Epic 100 5.5 10,20,30 0,90,0 #FF0000 1,2,3 95.5,88.0,92.3 warrior,tank true

002 Player2 Rare 80 6.0 15,25,35 0,180,0 #00FF00 4,5,6 78.2,85.1,90.0 mage,healer false

"SpreadsheetEasy/PlayerConfig.xlsx" → "PlayerConfig"

"PlayerConfig.xlsx" → "PlayerConfig"

"PlayerConfig" → "PlayerConfig"

This means you can use any of these formats when querying, and they will all resolve to the
same cache key:

3. Basic Usage

Important: The first row of your Spreadsheet sheet must contain column headers
(column names). Data rows start from the second row.

Example Spreadsheet Structure:

using SpreadsheetEasy;

// All these are equivalent:
SpreadsheetReader.GetString("SpreadsheetEasy/PlayerConfig", "Players",
"ID", "P001", "Name");
SpreadsheetReader.GetString("PlayerConfig.xlsx", "Players", "ID",
"P001", "Name");
SpreadsheetReader.GetString("PlayerConfig", "Players", "ID", "P001",
"Name");

using SpreadsheetEasy;

// Get a string value
string playerName = SpreadsheetReader.GetString("PlayerConfig",
"Players", "ID", "P001", "Name");

// Get an integer value
int health = SpreadsheetReader.GetInt("PlayerConfig", "Players", "ID",
"P001", "HP");

// Get a float value
float speed = SpreadsheetReader.GetFloat("PlayerConfig", "Players",
"ID", "P001", "Speed");

// Get a bool value (supports: true/false, 1/0, yes/no, case-
insensitive)
bool isActive = SpreadsheetReader.GetBool("PlayerConfig", "Players",
"ID", "P001", "Active");

// Get an Enum value (supports string name case-insensitive or integer
value)
// Note: GetEnum<T>() returns only the first matching result
// Use GetAllEnums<T>() to get all matching results when multiple
rows match
public enum PlayerRarity { Common, Rare, Epic, Legendary }
PlayerRarity rarity = SpreadsheetReader.GetEnum<PlayerRarity>
("PlayerConfig", "Players", "ID", "P001", "Rarity");

// Get all Enum values when multiple rows match the search condition
List<PlayerRarity> allRarities =
SpreadsheetReader.GetAllEnums<PlayerRarity>("PlayerConfig", "Players",
"HP", "100", "Rarity");

// You can also use Enum.ToString() as search value
string playerName = SpreadsheetReader.GetString("PlayerConfig",
"Players", "Rarity", PlayerRarity.Epic.ToString(), "Name");

// Get a Vector3 (format: "x,y,z" or "x;y;z")
Vector3 position = SpreadsheetReader.GetVector3("PlayerConfig",
"Players", "ID", "P001", "Position");
Vector3 rotation = SpreadsheetReader.GetVector3("PlayerConfig",
"Players", "ID", "P001", "Rotation");

Using TryGet Methods (No try-catch needed):

// Get a Color (supports hex #RRGGBB, #RRGGBBAA, or comma/semicolon-
separated r,g,b,a or r;g;b;a)
Color playerColor = SpreadsheetReader.GetColor("PlayerConfig",
"Players", "ID", "P001", "Color");

// Get an int array (format: "1,2,3" or "1;2;3")
int[] items = SpreadsheetReader.GetIntArray("PlayerConfig", "Players",
"ID", "P001", "Items");

// Get a float array (format: "1.5,2.5,3.5" or "1.5;2.5;3.5")
float[] scores = SpreadsheetReader.GetFloatArray("PlayerConfig",
"Players", "ID", "P001", "Scores");

// Get a string array (format: "a,b,c" or "a;b;c")
string[] tags = SpreadsheetReader.GetStringArray("PlayerConfig",
"Players", "ID", "P001", "Tags");

using SpreadsheetEasy;

// TryGet methods return bool and output the result via out parameter
// No need for try-catch blocks - cleaner code!

if (SpreadsheetReader.TryGetInt("PlayerConfig", "Players", "ID", "1001",
"HP", out int hp))
{
 Debug.Log($"HP is {hp}");
}
else
{
 Debug.Log("HP not found or invalid format");
}

4. SpreadsheetRow for Multiple Values

When you need multiple values from the same row, use SpreadsheetRow for better
performance:

// Works with all data types
if (SpreadsheetReader.TryGetString("PlayerConfig", "Players", "ID",
"P001", "Name", out string name))
{
 Debug.Log($"Player name: {name}");
}

if (SpreadsheetReader.TryGetFloat("PlayerConfig", "Players", "ID",
"1001", "Speed", out float speed))
{
 Debug.Log($"Speed: {speed}");
}

if (SpreadsheetReader.TryGetBool("PlayerConfig", "Players", "ID",
"1001", "Active", out bool isActive))
{
 Debug.Log($"Item is active: {isActive}");
}

using SpreadsheetEasy;

SpreadsheetRow playerRow = SpreadsheetReader.GetRow("PlayerConfig",
"Players", "ID", "P001");
if (playerRow != null)
{
 string name = playerRow.GetString("Name");
 int hp = playerRow.GetInt("HP");
 float speed = playerRow.GetFloat("Speed");
 bool active = playerRow.GetBool("Active");
 // Note: Enum values should be read using
SpreadsheetReader.GetEnum<T>() or SpreadsheetReader.TryGetEnum<T>()

5. Multiple Search Conditions

You can search with multiple conditions using Dictionary<string, string> . All
conditions must be satisfied (AND logic):

 // SpreadsheetRow does not have GetEnum method - use
SpreadsheetReader methods instead
 Vector3 pos = playerRow.GetVector3("Position");
 Vector3 rot = playerRow.GetVector3("Rotation");
 Color col = playerRow.GetColor("Color");
 int[] items = playerRow.GetIntArray("Items");
 float[] scores = playerRow.GetFloatArray("Scores");
 string[] tags = playerRow.GetStringArray("Tags");
}

using SpreadsheetEasy;

// Create search conditions
Dictionary<string, string> conditions = new Dictionary<string, string>
{
 { "HP", "100" },
 { "Speed", "3" }
};

// Get single row with multiple conditions
SpreadsheetRow playerRow = SpreadsheetReader.GetRow("PlayerConfig",
"Players", conditions);
if (playerRow != null)
{
 string name = playerRow.GetString("Name");
 int hp = playerRow.GetInt("HP");
 float speed = playerRow.GetFloat("Speed");
 Debug.Log($"Player: {name}, HP: {hp}, Speed: {speed}");
}

// Get all rows matching multiple conditions

API Reference

GetValue Methods

All GetValue methods follow this pattern:

Parameters:

fileName : Name of the Spreadsheet file (supports full path like
"SpreadsheetEasy/PlayerConfig" or file name only like "PlayerConfig" , with or

without extension)

Important: File names must be unique across all subdirectories!

List<SpreadsheetRow> playerRows =
SpreadsheetReader.GetAllRows("PlayerConfig", "Players", conditions);
foreach (SpreadsheetRow row in playerRows)
{
 Debug.Log($"Player: {row.GetString("Name")}");
}

// Get single value with multiple conditions
string playerName = SpreadsheetReader.GetString("PlayerConfig",
"Players", conditions, "Name");
int level = SpreadsheetReader.GetInt("PlayerConfig", "Players",
conditions, "Level");

// Get all values with multiple conditions
List<string> playerNames =
SpreadsheetReader.GetAllStrings("PlayerConfig", "Players", conditions,
"Name");
List<int> levels = SpreadsheetReader.GetAllInts("PlayerConfig",
"Players", conditions, "Level");

SpreadsheetReader.Get[Type](fileName, sheetName, searchColumn,
searchValue, targetColumn)

SpreadsheetEasy uses file names (without path and extension) as cache keys.

Examples: "PlayerConfig" , "SpreadsheetEasy/PlayerConfig" ,
"PlayerConfig.xlsx" all resolve to the same cache key "PlayerConfig"

sheetName : Name of the sheet within the Spreadsheet file

searchColumn : Column name to search for matching values

searchValue : Value to match in the search column

targetColumn : Column name to retrieve the value from

Available Methods (Single Condition):

Note: All methods throw exceptions when the row is not found (see Error Handling section).
Default values are returned only when the row is found but the cell value is empty or cannot
be parsed.

GetString() - Returns string value (throws KeyNotFoundException if row not
found, returns empty string if cell is empty)

GetInt() - Returns int value (throws KeyNotFoundException if row not found,
returns 0 if cell is empty or parse fails)

GetFloat() - Returns float value (throws KeyNotFoundException if row not found,
returns 0f if cell is empty or parse fails)

GetDouble() - Returns double value (throws KeyNotFoundException if row not
found, returns 0.0 if cell is empty or parse fails)

GetBool() - Returns bool value (throws KeyNotFoundException if row not found,
returns false if cell is empty or parse fails)

Accepts: "true" , "false" , "1" , "0" , "yes" , "no" (all case-insensitive,
e.g., TRUE, False, YES work too)

GetEnum<T>() - Returns Enum value (throws KeyNotFoundException if row not
found, returns default enum value if cell is empty or parse fails)

Important: Returns only the first matching result. If multiple rows match the
search condition, use GetAllEnums<T>() instead to get all matching results.

Supports parsing from string name (case-insensitive) or integer value

Example: GetEnum<PlayerRarity>("PlayerConfig", "Players", "ID",
"P001", "Rarity")

Spreadsheet cell value can be "Common", "common", "COMMON", or "0"
(integer value)

GetVector3() - Returns Vector3 (throws KeyNotFoundException if row not found,
returns zero if cell is empty or parse fails)

Format: "x,y,z" or "x;y;z"

GetColor() - Returns Color (throws KeyNotFoundException if row not found,
returns white if cell is empty or parse fails)

Formats: "r,g,b,a" , "r;g;b;a" , "#RRGGBB" , or "#RRGGBBAA"

GetIntArray() - Returns int[] (throws KeyNotFoundException if row not found,
returns empty array if cell is empty or parse fails)

Format: "1,2,3" or "1;2;3"

GetFloatArray() - Returns float[] (throws KeyNotFoundException if row not found,
returns empty array if cell is empty or parse fails)

Format: "1.5,2.5,3.5" or "1.5;2.5;3.5"

GetStringArray() - Returns string[] (throws KeyNotFoundException if row not
found, returns empty array if cell is empty or parse fails)

Format: "a,b,c" or "a;b;c"

Available Methods (Multiple Conditions):

All Get* methods support multiple search conditions using Dictionary<string,
string> :

Example:

// Get value with multiple conditions
SpreadsheetReader.Get[Type](fileName, sheetName, Dictionary<string,
string> searchConditions, targetColumn)

Note: All conditions must be satisfied (AND logic). The method returns the first matching
row's value.

Important: Multiple condition search supports numeric-aware comparison. For example,
searching with "3" will match Spreadsheet values like "3.0" or "3" , and vice versa.
This makes it easier to search numeric columns without worrying about exact string format.

Available GetAll Methods (Multiple Values):

When multiple rows match your search criteria, use GetAll* methods to retrieve all
matching values:

GetAllStrings() - Returns List<string> containing all matching string values

GetAllInts() - Returns List<int> containing all matching int values

GetAllFloats() - Returns List<float> containing all matching float values

GetAllDoubles() - Returns List<double> containing all matching double values

GetAllBools() - Returns List<bool> containing all matching bool values

GetAllEnums<T>() - Returns List<T> containing all matching Enum values

GetAllVector3s() - Returns List<Vector3> containing all matching Vector3

// Create search conditions: HP = 100 AND Speed = 3
Dictionary<string, string> conditions = new Dictionary<string, string>
{
 { "HP", "100" },
 { "Speed", "3" }
};

// Get single value with multiple conditions
string playerName = SpreadsheetReader.GetString("PlayerConfig",
"Players", conditions, "Name");
int level = SpreadsheetReader.GetInt("PlayerConfig", "Players",
conditions, "Level");
float speed = SpreadsheetReader.GetFloat("PlayerConfig", "Players",
conditions, "Speed");

values

GetAllColors() - Returns List<Color> containing all matching Color values

Note: All GetAll* methods throw exceptions when the file/sheet is not found. They return
empty lists only when no matching rows are found (but file/sheet exists). For Enum values,
use TryGetAllEnums<T>() to avoid exception handling.

All GetAll* methods support both single condition and multiple conditions:

TryGetValue Methods

The TryGet* methods provide a cleaner way to query Spreadsheet data without using try-
catch blocks. These methods return bool to indicate success or failure, and output the
result through an out parameter.

All TryGetValue methods follow this pattern:

Parameters:

Same as Get* methods, plus:

result : Output parameter that receives the value if the operation succeeds

// Single condition
List<T> GetAll[Type](fileName, sheetName, searchColumn, searchValue,
targetColumn)

// Multiple conditions
List<T> GetAll[Type](fileName, sheetName, Dictionary<string, string>
searchConditions, targetColumn)

bool SpreadsheetReader.TryGet[Type](fileName, sheetName, searchColumn,
searchValue, targetColumn, out [Type] result)

Return Value:

Returns true if the value was found and successfully parsed

Returns false if the row was not found, the file/sheet/column doesn't exist, or the
value cannot be parsed

Available TryGet Methods (Single Condition):

TryGetString() - Returns bool, outputs string value

TryGetInt() - Returns bool, outputs int value

TryGetFloat() - Returns bool, outputs float value

TryGetDouble() - Returns bool, outputs double value

TryGetBool() - Returns bool, outputs bool value

Accepts: "true" , "false" , "1" , "0" , "yes" , "no" (all case-insensitive)

TryGetEnum<T>() - Returns bool, outputs Enum value

Supports parsing from string name (case-insensitive) or integer value

TryGetVector3() - Returns bool, outputs Vector3 value

Format: "x,y,z" or "x;y;z"

TryGetColor() - Returns bool, outputs Color value

Formats: "r,g,b,a" , "r;g;b;a" , "#RRGGBB" , or "#RRGGBBAA"

TryGetIntArray() - Returns bool, outputs int[] value

Format: "1,2,3" or "1;2;3"

TryGetFloatArray() - Returns bool, outputs float[] value

Format: "1.5,2.5,3.5" or "1.5;2.5;3.5"

TryGetStringArray() - Returns bool, outputs string[] value

Format: "a,b,c" or "a;b;c"

Available TryGet Methods (Multiple Conditions):

All TryGet* methods support multiple search conditions using Dictionary<string,
string> :

Example:

bool SpreadsheetReader.TryGet[Type](fileName, sheetName,
Dictionary<string, string> searchConditions, targetColumn, out [Type]
result)

// Single condition - no try-catch needed!
if (SpreadsheetReader.TryGetInt("PlayerConfig", "Players", "ID", "1001",
"HP", out int hp))
{
 Debug.Log($"HP is {hp}");
}
else
{
 Debug.Log("HP not found or invalid format");
}

// Multiple conditions
Dictionary<string, string> conditions = new Dictionary<string, string>
{
 { "HP", "100" },
 { "Speed", "3" }
};

if (SpreadsheetReader.TryGetString("PlayerConfig", "Players",
conditions, "Name", out string name))
{
 Debug.Log($"Player name is {name}");
}
else

{
 Debug.Log("Player not found");
}

// TryGet with different types
if (SpreadsheetReader.TryGetFloat("PlayerConfig", "Players", "ID",
"1001", "Speed", out float speed))
{
 Debug.Log($"Speed is {speed}");
}

if (SpreadsheetReader.TryGetBool("PlayerConfig", "Players", "ID",
"1001", "Active", out bool isActive))
{
 Debug.Log($"Item is active: {isActive}");
}

if (SpreadsheetReader.TryGetEnum<PlayerRarity>("PlayerConfig",
"Players", "ID", "P001", "Rarity", out PlayerRarity rarity))
{
 Debug.Log($"Player rarity: {rarity}");
}
else
{
 Debug.Log("Player rarity not found or invalid format");
}

if (SpreadsheetReader.TryGetVector3("PlayerConfig", "Players", "ID",
"1001", "Position", out Vector3 position))
{
 Debug.Log($"Position is {position}");
}

if (SpreadsheetReader.TryGetColor("PlayerConfig", "Players", "ID",
"1001", "Color", out Color color))
{

 Debug.Log($"Color is {color}");
}

if (SpreadsheetReader.TryGetIntArray("PlayerConfig", "Players", "ID",
"1001", "Items", out int[] items))
{
 Debug.Log($"Items array has {items.Length} elements");
}

// TryGetAllEnums: Get all Enum values without exception handling
if (SpreadsheetReader.TryGetAllEnums<PlayerRarity>("PlayerConfig",
"Players", "HP", "100", "Rarity", out List<PlayerRarity> rarities))
{
 Debug.Log($"Found {rarities.Count} matching rarities");
 foreach (PlayerRarity rarity in rarities)
 {
 Debug.Log($"Rarity: {rarity}");
 }
}
else
{
 Debug.Log("Failed to get Enum values (file/sheet not found or
invalid)");
}

// TryGetAllStrings: Get all string values without exception handling
if (SpreadsheetReader.TryGetAllStrings("PlayerConfig", "Players", "HP",
"100", "Name", out List<string> names))
{
 Debug.Log($"Found {names.Count} matching names");
 foreach (string name in names)
 {
 Debug.Log($"Name: {name}");
 }
}

Benefits of TryGet Methods:

// TryGetAllInts: Get all int values without exception handling
if (SpreadsheetReader.TryGetAllInts("PlayerConfig", "Players", "Rarity",
"Epic", "HP", out List<int> hps))
{
 Debug.Log($"Found {hps.Count} HP values");
}

// TryGetAllFloats: Get all float values without exception handling
if (SpreadsheetReader.TryGetAllFloats("PlayerConfig", "Players", "HP",
"100", "Speed", out List<float> speeds))
{
 Debug.Log($"Found {speeds.Count} speed values");
}

// TryGetAllBools: Get all bool values without exception handling
if (SpreadsheetReader.TryGetAllBools("PlayerConfig", "Players", "HP",
"100", "Active", out List<bool> actives))
{
 Debug.Log($"Found {actives.Count} active status values");
}

// TryGetAllVector3s: Get all Vector3 values without exception handling
if (SpreadsheetReader.TryGetAllVector3s("PlayerConfig", "Players", "HP",
"100", "Position", out List<Vector3> positions))
{
 Debug.Log($"Found {positions.Count} position values");
}

// TryGetAllColors: Get all Color values without exception handling
if (SpreadsheetReader.TryGetAllColors("PlayerConfig", "Players", "HP",
"100", "Color", out List<Color> colors))
{
 Debug.Log($"Found {colors.Count} color values");
}

No try-catch blocks: Cleaner code without exception handling

Explicit failure handling: Return value clearly indicates success or failure

Safe defaults: Output parameter is set to default value (0, false, null, etc.) on failure

Performance: Same performance as Get* methods (uses the same index cache
system)

Available TryGetAll Methods (Multiple Values):

All TryGetAll* methods provide exception-free access to multiple matching values:

TryGetAllStrings() - Returns bool, outputs List<string> containing all
matching string values

TryGetAllInts() - Returns bool, outputs List<int> containing all matching int
values

TryGetAllFloats() - Returns bool, outputs List<float> containing all matching
float values

TryGetAllDoubles() - Returns bool, outputs List<double> containing all
matching double values

TryGetAllBools() - Returns bool, outputs List<bool> containing all matching
bool values

TryGetAllEnums<T>() - Returns bool, outputs List<T> containing all matching
Enum values

TryGetAllVector3s() - Returns bool, outputs List<Vector3> containing all
matching Vector3 values

TryGetAllColors() - Returns bool, outputs List<Color> containing all matching
Color values

Behavior:

Returns true if successful (file/sheet exists), false otherwise

Outputs empty list if no matches found (but file/sheet exists)

Outputs empty list and returns false if file/sheet not found or invalid

All TryGetAll* methods support both single condition and multiple conditions:

When to Use TryGet vs Get:

Use TryGet* when you want to handle missing data gracefully without exceptions

Use Get* when you want exceptions to be thrown for error handling or when data
must exist

GetRow Method

Returns an SpreadsheetRow object that provides access to all columns in the matched
row. Use this when you need multiple values from the same row.

Note: This method returns only the first matching row. If multiple rows match the search
criteria, use GetAllRows() instead.

GetRow Method (Multiple Search Conditions)

Search for a row using multiple conditions. All conditions must be satisfied (AND logic).

// Single condition
bool TryGetAll[Type](fileName, sheetName, searchColumn, searchValue,
targetColumn, out List<[Type]> result)

// Multiple conditions
bool TryGetAll[Type](fileName, sheetName, Dictionary<string, string>
searchConditions, targetColumn, out List<[Type]> result)

SpreadsheetRow GetRow(string fileName, string sheetName, string
searchColumn, string searchValue)

SpreadsheetRow GetRow(string fileName, string sheetName,
Dictionary<string, string> searchConditions)

Note: Multiple condition search supports numeric-aware comparison. For example,
searching with "3" will match Spreadsheet values like "3.0" or "3" , and vice versa.

Example:

GetAllRows Method (Multiple Matches)

When multiple rows match your search criteria (e.g., multiple players with HP = 100), use
GetAllRows() to get all matching rows:

Example:

// Search with multiple conditions: HP = 100 AND Speed = 3
Dictionary<string, string> conditions = new Dictionary<string, string>
{
 { "HP", "100" },
 { "Speed", "3" }
};

SpreadsheetRow playerRow = SpreadsheetReader.GetRow("PlayerConfig",
"Players", conditions);
if (playerRow != null)
{
 string name = playerRow.GetString("Name");
 int hp = playerRow.GetInt("HP");
 float speed = playerRow.GetFloat("Speed");
 Debug.Log($"Player: {name}, HP: {hp}, Speed: {speed}");
}

List<SpreadsheetRow> GetAllRows(string fileName, string sheetName,
string searchColumn, string searchValue)

GetAllRows Method (Multiple Search Conditions)

Get all rows matching multiple conditions. All conditions must be satisfied (AND logic).

Note: Multiple condition search supports numeric-aware comparison. For example,
searching with "3" will match Spreadsheet values like "3.0" or "3" , and vice versa.

Example:

// Get all players with HP = 100
List<SpreadsheetRow> playerRows =
SpreadsheetReader.GetAllRows("PlayerConfig", "Players", "HP", "100");

foreach (SpreadsheetRow row in playerRows)
{
 string name = row.GetString("Name");
 int hp = row.GetInt("HP");
 Debug.Log($"Player: {name}, HP: {hp}");
}

List<SpreadsheetRow> GetAllRows(string fileName, string sheetName,
Dictionary<string, string> searchConditions)

// Get all players with HP = 100 AND Speed = 3
Dictionary<string, string> conditions = new Dictionary<string, string>
{
 { "HP", "100" },
 { "Speed", "3" }
};

List<SpreadsheetRow> playerRows =
SpreadsheetReader.GetAllRows("PlayerConfig", "Players", conditions);

foreach (SpreadsheetRow row in playerRows)
{

GetAll Methods (Multiple Values)

For convenience, you can also get all matching values from a specific column directly:

Note: All GetAll* methods throw exceptions when the file/sheet is not found. If you want
to avoid exception handling, use the corresponding TryGetAll* methods (e.g.,
TryGetAllStrings() , TryGetAllInts() , TryGetAllEnums<T>() , etc.) which are

available for all data types.

 string name = row.GetString("Name");
 int hp = row.GetInt("HP");
 float speed = row.GetFloat("Speed");
 Debug.Log($"Player: {name}, HP: {hp}, Speed: {speed}");
}

// Get all string values
List<string> GetAllStrings(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn)

// Get all int values
List<int> GetAllInts(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn)

// Get all float values
List<float> GetAllFloats(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn)

// Get all double values
List<double> GetAllDoubles(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn)

// Get all bool values
List<bool> GetAllBools(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn)

// Get all Enum values (returns all matching results as List<T>)

Example:

// Important: Use GetAllEnums<T>() instead of GetEnum<T>() when you need
all matching results
// Note: GetAllEnums<T>() throws exceptions when file/sheet not found
// Use TryGetAllEnums<T>() to avoid exception handling
List<T> GetAllEnums<T>(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn) where T : struct,
Enum

// Try to get all Enum values (no exception handling needed)
// Returns true if successful, false otherwise
// Outputs List<T> containing all matching Enum values (empty list if no
matches found)
bool TryGetAllEnums<T>(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn, out List<T>
result) where T : struct, Enum

// Get all Vector3 values
List<Vector3> GetAllVector3s(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn)

// Get all Color values
List<Color> GetAllColors(string fileName, string sheetName, string
searchColumn, string searchValue, string targetColumn)

// Get all player names with HP = 100
List<string> playerNames =
SpreadsheetReader.GetAllStrings("PlayerConfig", "Players", "HP", "100",
"Name");

// Get all HP values where Name = "Player1"
List<int> hps = SpreadsheetReader.GetAllInts("PlayerConfig", "Players",
"Name", "Player1", "HP");

GetAll Methods (Multiple Search Conditions)

All GetAll* methods support multiple search conditions:

// Get all Enum values
// Note: GetEnum<T>() returns only the first matching result
// GetAllEnums<T>() returns all matching results as List<T>
public enum PlayerRarity { Common, Rare, Epic, Legendary }
List<PlayerRarity> rarities =
SpreadsheetReader.GetAllEnums<PlayerRarity>("PlayerConfig", "Players",
"HP", "100", "Rarity");
foreach (PlayerRarity rarity in rarities)
{
 Debug.Log($"Player Rarity: {rarity}");
}

// Using TryGetAllEnums (no exception handling needed)
if (SpreadsheetReader.TryGetAllEnums<PlayerRarity>("PlayerConfig",
"Players", "HP", "100", "Rarity", out List<PlayerRarity> rarities2))
{
 Debug.Log($"Found {rarities2.Count} matching rarities");
 foreach (PlayerRarity rarity in rarities2)
 {
 Debug.Log($"Player Rarity: {rarity}");
 }
}
else
{
 Debug.Log("Failed to get Enum values");
}

// Get all string values with multiple conditions
List<string> GetAllStrings(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn)

// Get all int values with multiple conditions

List<int> GetAllInts(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn)

// Get all float values with multiple conditions
List<float> GetAllFloats(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn)

// Get all double values with multiple conditions
List<double> GetAllDoubles(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn)

// Get all bool values with multiple conditions
List<bool> GetAllBools(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn)

// Get all Enum values with multiple conditions
// Note: GetAllEnums<T>() throws exceptions when file/sheet not found
// Use TryGetAllEnums<T>() to avoid exception handling
List<T> GetAllEnums<T>(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn) where
T : struct, Enum

// Try to get all Enum values with multiple conditions (no exception
handling needed)
bool TryGetAllEnums<T>(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn, out
List<T> result) where T : struct, Enum

// Get all Vector3 values with multiple conditions
List<Vector3> GetAllVector3s(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn)

// Get all Color values with multiple conditions
List<Color> GetAllColors(string fileName, string sheetName,
Dictionary<string, string> searchConditions, string targetColumn)

Example:

// Create search conditions
Dictionary<string, string> conditions = new Dictionary<string, string>
{
 { "HP", "100" },
 { "Speed", "3" }
};

// Get all player names with HP = 100 AND Speed = 3
List<string> playerNames =
SpreadsheetReader.GetAllStrings("PlayerConfig", "Players", conditions,
"Name");

// Get all levels with HP = 100 AND Speed = 3
List<int> levels = SpreadsheetReader.GetAllInts("PlayerConfig",
"Players", conditions, "Level");

// Get all Enum values with multiple conditions
// Note: GetEnum<T>() returns only the first matching result
// GetAllEnums<T>() returns all matching results as List<T>
public enum PlayerRarity { Common, Rare, Epic, Legendary }
List<PlayerRarity> rarities =
SpreadsheetReader.GetAllEnums<PlayerRarity>("PlayerConfig", "Players",
conditions, "Rarity");

// Using TryGetAllEnums with multiple conditions (no exception handling
needed)
if (SpreadsheetReader.TryGetAllEnums<PlayerRarity>("PlayerConfig",
"Players", conditions, "Rarity", out List<PlayerRarity> rarities2))
{
 Debug.Log($"Found {rarities2.Count} matching rarities");
 foreach (PlayerRarity rarity in rarities2)
 {
 Debug.Log($"Player Rarity: {rarity}");
 }

JSON Export Methods

}
else
{
 Debug.Log("Failed to get Enum values");
}

// Example: Process all Enum values
foreach (PlayerRarity rarity in rarities)
{
 switch (rarity)
 {
 case PlayerRarity.Common:
 Debug.Log("Player Rarity: Common");
 break;
 case PlayerRarity.Rare:
 Debug.Log("Player Rarity: Rare");
 break;
 case PlayerRarity.Epic:
 Debug.Log("Player Rarity: Epic");
 break;
 case PlayerRarity.Legendary:
 Debug.Log("Player Rarity: Legendary");
 break;
 }
}

Note:

GetRowJson() throws exceptions when the row is not found (same behavior as other
Get methods)

GetTableJson() returns "[]" (empty JSON array) if the file or sheet is not found, or
if the sheet is empty (does not throw exceptions)

Utility Methods

// Get single row as JSON (throws KeyNotFoundException if row not found)
string rowJson = SpreadsheetReader.GetRowJson("PlayerConfig", "Players",
"ID", "P001");

// Get entire table as JSON array (returns "[]" if file/sheet not found
or empty)
string tableJson = SpreadsheetReader.GetTableJson("PlayerConfig",
"Players");

// Load all Spreadsheet files and rebuild indices (called automatically
on first access)
SpreadsheetReader.LoadAllSpreadsheet();

// Manually rebuild indices (useful after clearing index cache)
SpreadsheetReader.RebuildIndices();

// Clear only index cache (keeps data loaded)
SpreadsheetReader.ClearIndexCache();

// Clear all cache (data + indices)
SpreadsheetReader.ClearCache();

Spreadsheet File Format Requirements

1. First row must be headers (column names)

2. Column names are case-insensitive

3. Empty cells return default values (empty string for strings, 0 for numbers, false for
bool, empty arrays for arrays, etc.) when the row is found. If the row is not found,
methods throw exceptions.

4. Supported formats: .xlsx , .xls

Error Handling

SpreadsheetEasy provides two approaches for error handling:

Approach 1: TryGet Methods (Recommended for Missing Data)

Use TryGet* methods when you want to handle missing data gracefully without
exceptions:

Benefits:

No try-catch blocks needed

Explicit success/failure indication

Cleaner, more readable code

// Clean code without try-catch
if (SpreadsheetReader.TryGetInt("PlayerConfig", "Players", "ID", "P001",
"HP", out int hp))
{
 Debug.Log($"Player HP: {hp}");
}
else
{
 Debug.Log("HP not found or invalid format");
}

Approach 2: Get Methods with Exception Handling

All Get* methods throw exceptions on error instead of returning default values. Use try-
catch blocks to handle errors:

Exception Types:

FileNotFoundException : Spreadsheet file not found

ArgumentException : Invalid parameters (e.g., column not found, sheet not found)

InvalidOperationException : Operation failed (e.g., sheet is empty)

KeyNotFoundException : No matching row found

try
{
 int hp = SpreadsheetReader.GetInt("PlayerConfig", "Players", "ID",
"P001", "HP");
 Debug.Log($"Player HP: {hp}");
}
catch (FileNotFoundException ex)
{
 Debug.LogError($"Spreadsheet file not found: {ex.Message}");
}
catch (KeyNotFoundException ex)
{
 Debug.LogWarning($"Row not found: {ex.Message}");
}
catch (ArgumentException ex)
{
 Debug.LogError($"Invalid argument: {ex.Message}");
}
catch (FormatException ex)
{
 Debug.LogError($"Format error: {ex.Message}");
}

FormatException : Value format error (e.g., cannot parse string to int)

IndexOutOfRangeException : Index out of range (SpreadsheetRow only)

When to Use Each Approach:

Use **TryGet*** methods: When data may not exist and you want to handle it
gracefully (e.g., optional configuration, user-generated content)

Use **Get*** methods: When data must exist and exceptions should be thrown
(e.g., critical game data, configuration that must be present)

Example: Using TryGet to check if value exists:

// Using TryGet (no try-catch needed)
if (SpreadsheetReader.TryGetString("PlayerConfig", "Sheet1", "ID",
"999", "Name", out string value))
{
 Debug.Log($"Value found: {value}");
}
else
{
 Debug.Log("Value not found!");
}

// Using Get with try-catch (alternative approach)
try
{
 string value = SpreadsheetReader.GetString("PlayerConfig", "Sheet1",
"ID", "999", "Name");
 Debug.Log($"Value found: {value}");
}
catch (KeyNotFoundException)
{
 Debug.Log("Value not found!");
}

Advanced Usage

SpreadsheetEasy Settings

SpreadsheetEasy provides a settings system that allows you to configure how Spreadsheet
files are loaded at runtime. The settings are stored in a ScriptableObject asset located at
Assets/Resources/SpreadsheetEasySettings.asset .

Accessing Settings

To access or create the settings:

1. Via Menu: Assets → Create → Spreadsheet Easy → Settings

2. Via Code: The settings are automatically loaded from
Resources/SpreadsheetEasySettings.asset at runtime

Loading Mode

The LoadingMode setting determines how Spreadsheet files are loaded:

RuntimeParsing (Default):

Parse Spreadsheet files at runtime from StreamingAssets folder

Files are parsed on first access and cached for subsequent queries

Best for: Development, testing, or when Spreadsheet files need to be updated without
rebuilding

Requires: Spreadsheet files in StreamingAssets folder

ScriptableObject (Performance Mode):

Load pre-baked ScriptableObject assets for zero parsing cost

Spreadsheet files are converted to ScriptableObject assets at build time

Best for: Production builds where maximum performance is required

Requires: Spreadsheet source folder configured in settings, ScriptableObject assets
generated before build

Configuring Settings

1. Create or open SpreadsheetEasySettings.asset (via menu: Assets → Create →
Spreadsheet Easy → Settings)

2. Select the desired Mode :

RuntimeParsing: Parse Spreadsheet files at runtime (default)

ScriptableObject: Use pre-baked ScriptableObject assets

3. If using ScriptableObject mode:

Set Spreadsheet Source Folder to the folder containing your Spreadsheet
files

ScriptableObject assets will be automatically generated from Spreadsheet files
in this folder and saved to Resources/SpreadsheetEasyBaked folder

Important: If Spreadsheet Source Folder is not set, ScriptableObject assets
will NOT be auto-generated

How Loading Mode Affects Behavior

RuntimeParsing Mode:

LoadAllSpreadsheet() loads all Spreadsheet files from StreamingAssets folder

Files are parsed on first access if not preloaded

Data is cached in memory after first load

ScriptableObject Mode:

LoadAllSpreadsheet() skips StreamingAssets loading

Files are loaded on-demand from Resources/SpreadsheetEasyBaked folder as
ScriptableObject assets

No parsing overhead - data is already serialized in Unity's binary format

Faster load times, especially for large Spreadsheet files

ScriptableObject assets are automatically generated when Spreadsheet files in the
source folder are added, modified, or deleted

Note: The API usage remains the same regardless of loading mode. All Get* , TryGet* ,
and GetRow methods work identically in both modes.

Runtime File Loading

At runtime, SpreadsheetEasy loads files from the StreamingAssets folder:

StreamingAssets folder: Automatically scanned when LoadAllSpreadsheet() is called

Unity has only one StreamingAssets folder (Assets/StreamingAssets/)

Supports subdirectories within StreamingAssets

Files are accessible at runtime via file system

Files can be updated without rebuilding the application

SpreadsheetEasyIndex.txt generation and fallback

The index file StreamingAssets/SpreadsheetEasyIndex.txt is automatically
generated before builds by the AutoSpreadsheetIndexer
(IPreprocessBuildWithReport). You can also regenerate it manually via menu:
Tools → Spreadsheet Easy → Generate Spreadsheet Index (Recursive) .

The index file is automatically regenerated whenever files in the StreamingAssets
folder are added, deleted, or moved. This is handled by the
SpreadsheetIndexAssetPostprocessor which monitors asset changes.

Performance optimizations are in place (debounce mechanism) to prevent
unnecessary regenerations during rapid file operations, so you don't need to worry
about performance impact.

LoadAllSpreadsheet() uses SpreadsheetEasyIndex.txt to preload all
Spreadsheet files in one pass. If the file is missing or empty at runtime,
SpreadsheetEasy falls back to on-demand loading: the first access to a file performs
a direct load (slower once), and subsequent accesses use the cache. If the target
Spreadsheet file itself is missing, the first on-demand load will throw a file-not-found
error.

Best Practice:

Place Spreadsheet files in StreamingAssets folder for runtime access

Organize files in subdirectories within StreamingAssets for better file management

Loading from Subdirectories

If your Spreadsheet files are organized in subdirectories within the StreamingAssets folder,
you can use the file name (without extension) or the relative path (without extension) when
querying:

Important:

No extension needed: You don't need to include .xlsx or .xls in the file name
parameter

File names must be unique: SpreadsheetEasy uses file names (without path and

// File location: StreamingAssets/MyTable/EnemyData.xlsx
// You can use just the file name (no extension needed):
string enemyName = SpreadsheetReader.GetString("EnemyData", "Sheet1",
"ID", "P001", "Name");

// Or use the relative path (no extension needed):
string enemyName = SpreadsheetReader.GetString("MyTable/EnemyData",
"Sheet1", "ID", "P001", "Name");

// File location: StreamingAssets/GameData/Items.xlsx
int itemSpeed = SpreadsheetReader.GetInt("Items", "Items", "ItemID",
"sword_01", "Speed");
// Or: SpreadsheetReader.GetInt("GameData/Items", "Items", "ItemID",
"sword_01", "Speed");

// File location: StreamingAssets/Config/Levels/Stage1.xlsx
float difficulty = SpreadsheetReader.GetFloat("Stage1", "Settings",
"Key", "difficulty", "Value");
// Or: SpreadsheetReader.GetFloat("Config/Levels/Stage1", "Settings",
"Key", "difficulty", "Value");

extension) as cache keys. If you have multiple files with the same name in different
folders, only the first one loaded will be accessible. See File Name Requirements for
details.

Tools

Spreadsheet Data JSON Checker

A standalone JSON validation tool that works independently and directly reads
Spreadsheet files. This tool allows you to quickly validate JSON format in Spreadsheet files
from any folder in your project.

Access the Tool

Menu Path: Tools → Spreadsheet Easy → Spreadsheet Data JSON Checker

Opens an EditorWindow where you can select a folder to validate

Features

Direct File Access: Works directly with Spreadsheet files, no pre-processing or setup
required

Folder Selection: Drag and drop folders from Project window or use the object field
to browse

Recursive Search: Automatically scans all subdirectories for Spreadsheet files

Automatic JSON Detection: Detects columns containing JSON data by checking
rows 2-52

Comprehensive Validation: Validates all JSON cells in detected columns

Detailed Error Reporting: Shows file path, sheet name, row number, column name,
and error message for each invalid JSON cell

Results Display: Validation results displayed directly in the EditorWindow with:

Summary statistics (files checked, sheets checked, JSON cells validated, errors
found)

Completion time and duration

List of all checked files and their sheets

Persistent Selection: Remembers your last selected folder for convenience

How to Use

1. Open the tool via Tools → Spreadsheet Easy → Spreadsheet Data JSON
Checker

2. Drag a folder from the Project window to the "Spreadsheet Folder" field, or click the
field to browse

3. Click "Validate JSON" button

4. Review the validation results in the window:

Check the summary message for overall status

View completion time and duration

Expand "Checked Files and Sheets" to see all processed files

Check Console for detailed error messages if any errors are found

Validation Process

The tool automatically:

1. Scans the selected folder and all subdirectories for .xlsx and .xls files

2. Reads each Spreadsheet file and processes all sheets

3. Detects JSON columns by checking if cells in rows 2-52 contain JSON-like content
(starts with { or [)

4. Validates all non-empty cells in detected JSON columns

5. Reports any JSON format errors with detailed location information

Error Messages

When JSON validation errors are found, the tool provides:

File Path: Assets-relative path to the Spreadsheet file

Sheet Name: Name of the sheet containing the error

Operation Without Index With Index Speedup

Single Query ~0.5ms ~0.01ms 50x faster

1000 Queries ~500ms ~10ms 50x faster

GetRow (multiple columns) ~1.5ms ~0.02ms 75x faster

Row Number: 1-based row number (for user-friendly display)

Column Name: Header name of the column

Error Message: Specific JSON validation error

Cell Value: Truncated cell content (first 200 characters)

All errors are logged to the Unity Console for easy review and debugging.

Use Cases

Quick Validation: Quickly check JSON format in Spreadsheet files with no setup
required

Batch Validation: Validate multiple Spreadsheet files in a folder at once

Pre-commit Checks: Verify JSON format before committing changes

Troubleshooting: Identify JSON format errors when Spreadsheet data fails to parse
correctly

Performance Optimization

SpreadsheetEasy includes a powerful Index Cache System that provides 50-100x
speedup for frequent data access.

Benchmark Results

Based on tests with a 1000-row Spreadsheet file:

How It Works

1. Column Index Cache: Column names mapped to indices (O(1) lookup)

2. Row Index Cache: Search results cached for instant retrieval

3. Lazy Loading: Indices built only when needed

4. Automatic: Works automatically, no code changes required

Recent Performance Improvements

SpreadsheetEasy has been significantly optimized for large Spreadsheet files:

Pre-built SharedString Lookup: O(1) access instead of O(n) per cell lookup

Optimized Column Index Parsing: Eliminated string concatenation overhead

Large File Support: Spreadsheet files with 5000+ rows now process in milliseconds
instead of tens of seconds

Performance API

// Load all Spreadsheet files (automatically rebuilds indices)
SpreadsheetReader.LoadAllSpreadsheet();

// Manually rebuild all indices (useful after clearing index cache)
SpreadsheetReader.RebuildIndices();

// Get cache statistics for monitoring
SpreadsheetReader.CacheStats stats = SpreadsheetReader.GetCacheStats();
Debug.Log(stats.ToString());

// CacheStats structure contains:
// - DataFileCount: Number of cached Spreadsheet files
// - DataSheetCount: Total number of cached sheets
// - DataRowCount: Total number of data rows
// - DataColumnCount: Total number of columns
// - ColumnIndexCount: Number of column index entries
// - RowIndexCount: Number of row index entries

// - EstimatedMemoryBytes: Estimated memory usage in bytes

// Example output of stats.ToString():
// ========== Cache Statistics ==========
// Data Cache:
// Files: 3
// Sheets: 5
// Total Rows: 1,250
// Total Columns: 120
// Average Rows per Sheet: 250.0
// Average Columns per Sheet: 24.0
//
// Index Cache:
// Column Index Maps: 5
// Row Index Entries: 450
//
// Memory Usage:
// Estimated Memory: 125KB
// ==

// Cache hit tracking (diagnostic)
SpreadsheetReader.ShowCacheTrackingLogs = true; // Enable detailed
cache hit/miss logs
SpreadsheetReader.CacheHitStats hitStats =
SpreadsheetReader.GetCacheHitStats();
Debug.Log(hitStats.ToString()); // Row/column index cache
hit rates
SpreadsheetReader.ResetCacheHitStats(); // Reset counters

// Example output of hitStats.ToString():
// ========== Cache Hit Statistics ==========
// Row Index Cache:
// Hits: 4
// Misses: 1
// Total Queries: 5
// Hit Rate: 80.0%

Best Practices

DO: Load Data at Startup

//
// Column Index Cache:
// Hits: 18
// Misses: 4
// Total Queries: 22
// Hit Rate: 81.8%
//
// Overall Statistics:
// Total Queries: 27
// Total Hits: 22
// Total Misses: 5
// Overall Hit Rate: 81.5%
// ==

// Clear only indices (keep data loaded)
SpreadsheetReader.ClearIndexCache();

// Clear everything (data + indices)
SpreadsheetReader.ClearCache();

public class GameManager : MonoBehaviour
{
 void Awake()
 {
 // LoadAllSpreadsheet automatically rebuilds indices for optimal
performance
 SpreadsheetReader.LoadAllSpreadsheet();
 Debug.Log("Spreadsheet data loaded!");
 }
}

Note: LoadAllSpreadsheet() automatically rebuilds indices, so you don't need to call
RebuildIndices() separately unless you've cleared the index cache.

DO: Use GetRow for Multiple Columns

DO: Use in Update() - It's Fast Enough!

// Bad: Multiple queries for same row (slow)
string name = SpreadsheetReader.GetString("Items", "Sheet1", "ID",
"1001", "Name");
int hp = SpreadsheetReader.GetInt("Items", "Sheet1", "ID", "1001",
"HP");
float speed = SpreadsheetReader.GetFloat("Items", "Sheet1", "ID",
"1001", "Speed");

// Good: GetRow once, access multiple columns (75x faster)
SpreadsheetRow row = SpreadsheetReader.GetRow("Items", "Sheet1", "ID",
"1001");
string name = row.GetString("Name");
int hp = row.GetInt("HP");
float speed = row.GetFloat("Speed");

// Good: With index cache, queries are extremely fast (~0.005ms)
void Update()
{
 // Safe to use in Update! Only ~0.005ms per query
 int hp = SpreadsheetReader.GetInt("Players", "Sheet1", "ID", "P001",
"HP");
 float speed = SpreadsheetReader.GetFloat("PlayerConfig", "Settings",
"Key", "speed", "Value");

 // 60 FPS = 16.67ms per frame
 // You can do ~3000 queries per frame before performance issues!
}

DO: Cache Frequently Used Data

// Even better: Cache SpreadsheetRow for multiple columns
SpreadsheetRow _playerRow;

void Start()
{
 _playerRow = SpreadsheetReader.GetRow("Players", "Sheet1", "ID",
"P001");
}

void Update()
{
 // Extremely fast! Just memory access
 int hp = _playerRow.GetInt("HP");
 float speed = _playerRow.GetFloat("Speed");
}

public class ItemDatabase : MonoBehaviour
{
 private Dictionary<string, SpreadsheetRow> _itemCache = new
Dictionary<string, SpreadsheetRow>();

 public SpreadsheetRow GetItem(string itemId)
 {
 if (!_itemCache.ContainsKey(itemId))
 {
 _itemCache[itemId] = SpreadsheetReader.GetRow("Items",
"Sheet1", "ID", itemId);
 }
 return _itemCache[itemId];
 }
}

CAUTION: Extremely Large Loops (1000+)

For very large datasets (1000+ items per frame), consider pre-caching:

// Still works, but not optimal: 1000 queries × 0.005ms = 5ms per frame
void Update()
{
 for (int i = 0; i < 1000; i++)
 {
 string name = SpreadsheetReader.GetString("Items", "Sheet1",
"ID", i.ToString(), "Name");
 ProcessItem(name);
 }
}

// Better for extreme cases: Pre-cache for maximum performance
Dictionary<int, SpreadsheetRow> _items;

void Start()
{
 // Load all items once (1000 queries × 0.005ms = 5ms, one-time cost)
 _items = new Dictionary<int, SpreadsheetRow>();
 for (int i = 0; i < 1000; i++)
 {
 _items[i] = SpreadsheetReader.GetRow("Items", "Sheet1", "ID",
i.ToString());
 }
}

void Update()
{
 // 50x faster: Dictionary lookup ~0.0001ms × 1000 = 0.1ms per frame
 for (int i = 0; i < 1000; i++)
 {
 string name = _items[i].GetString("Name");
 ProcessItem(name);

Note: For loops with < 100 iterations, the cached version (5ms) is already fast enough for
most games!

DON'T: Clear Cache Unnecessarily

Memory Usage

For a typical Spreadsheet file with 1000 rows and 20 columns:

Column Index Cache: ~2 KB per sheet

Row Index Cache: ~50 KB per sheet

 }
}

// Bad: Clears cache every frame
void Update()
{
 SpreadsheetReader.ClearCache();
 int hp = SpreadsheetReader.GetInt("Items", "Sheet1", "ID", "1001",
"HP");
}

// Good: Cache persists across frames
void Start()
{
 SpreadsheetReader.LoadAllSpreadsheet(); // Automatically rebuilds
indices
}

void Update()
{
 int hp = SpreadsheetReader.GetInt("Items", "Sheet1", "ID", "1001",
"HP"); // Fast!
}

Total Overhead: ~52 KB per sheet (minimal!)

Performance Testing

Use SpreadsheetEasyPerformanceTest.cs to benchmark your data:

1. Open Assets/SpreadsheetEasy/Examples/SpreadsheetEasyPerformanceTest.unity

Example output:

Advanced Optimization Strategies

For very large datasets (10,000+ rows), consider these strategies:

1. Partition Data: Split into multiple sheets by category

2. Lazy Loading: Load sheets only when needed

3. Application Cache: Cache SpreadsheetRow objects at application level

4. Preload Critical Data: Use RebuildIndices() for frequently accessed sheets

Example: Lazy Loading with Application Cache

[SpreadsheetEasy] Speedup: 51.57x faster
[SpreadsheetEasy] Time saved: 477.87ms (98.1%)

public class DataManager : MonoBehaviour
{
 private Dictionary<string, Dictionary<string, SpreadsheetRow>>
_cache;

 void Awake()
 {
 _cache = new Dictionary<string, Dictionary<string,
SpreadsheetRow>>();
 }

Troubleshooting

Q: Spreadsheet files not loading
A: Make sure your Spreadsheet files are placed in StreamingAssets folder, and call
LoadAllSpreadsheet() at startup. Check the Console for any error messages.

Q: Example scenes cannot run or show errors
A: If example scenes cannot execute, it may be because the example Spreadsheet files are
missing from the StreamingAssets folder. Example files are automatically copied to the
StreamingAssets folder when you first import the asset. If the automatic copy did not occur,
or you accidentally deleted the example files, you can manually execute the menu item
Tools → Spreadsheet Easy → Copy Example Files To StreamingAssets to copy all

example Spreadsheet files to the StreamingAssets folder.

 public SpreadsheetRow GetData(string sheetName, string id)
 {
 // Ensure sheet cache exists
 if (!_cache.ContainsKey(sheetName))
 {
 _cache[sheetName] = new Dictionary<string, SpreadsheetRow>
();
 }

 // Check application cache
 if (!_cache[sheetName].ContainsKey(id))
 {
 // Query SpreadsheetReader (uses index cache)
 _cache[sheetName][id] = SpreadsheetReader.GetRow("GameData",
sheetName, "ID", id);
 }

 return _cache[sheetName][id];
 }
}

Note: The original example files are stored in
Assets/SpreadsheetEasy/Examples/SpreadsheetExamples . If you don't need the

example files for the demo scenes, you can safely delete the
Assets/StreamingAssets/SpreadsheetExamples folder. When you need them again,

simply execute the menu item Tools → Spreadsheet Easy → Copy Example Files To
StreamingAssets once to restore the example files.

Q: Queries are still slow
A: Make sure you're not clearing cache unnecessarily. Check for ClearCache() or
ClearIndexCache() calls in your code. Alternatively, you can use ScriptableObject mode

for better performance:

1. Open SpreadsheetEasySettings.asset (via menu: Tools → Spreadsheet Easy
→ Settings)

2. Change Mode to ScriptableObject

3. Set Spreadsheet Source Folder to your Spreadsheet files folder

4. ScriptableObject assets will be automatically generated, providing zero parsing cost
at runtime

Q: How do I switch between RuntimeParsing and ScriptableObject modes?
A: You can switch modes using the Settings ScriptableObject:

1. Open SpreadsheetEasySettings.asset via menu: Tools → Spreadsheet Easy
→ Settings

2. Change the Mode dropdown to your desired mode:

RuntimeParsing: Parse Spreadsheet files at runtime from StreamingAssets
(default)

ScriptableObject: Load pre-baked ScriptableObject assets for zero parsing
cost

3. If switching to ScriptableObject mode, make sure to set Spreadsheet Source
Folder to your Spreadsheet files folder

4. The settings are automatically loaded at runtime, so you can switch modes without
code changes

Q: Memory usage is high
A: Use ClearIndexCache() to free index memory while keeping data loaded. Or use
application-level caching with selective loading.

Q: First query is slow
A: Make sure you call LoadAllSpreadsheet() at startup. It automatically rebuilds indices
for optimal performance.

Q: How do I know if index cache is working?
A: Use SpreadsheetEasyPerformanceTest to measure performance. You should see 50-
100x speedup.

Q: Crash on iOS build with System.ExecutionEngineException
A: This is caused by Code Stripping removing necessary assemblies. You must provide a
link.xml file in your plugin root directory to prevent stripping of required assemblies.

Create a file named link.xml in Assets/SpreadsheetEasy/ (or your plugin root
directory) with the following content:

This prevents Unity's code stripper from removing required types and methods, which can
cause crashes on iOS builds.

Q: Multiple precompiled assemblies with the same name error
A: This error occurs when multiple plugins in your project include the same DLL (e.g.,
ExcelDataReader.dll). If you encounter this error, please delete the ExcelDataReader.dll
from this asset's folder and use the one already in your project.

To fix:

1. Locate the ExcelDataReader.dll in Assets/SpreadsheetEasy/ExcelDataReader/ (or
similar location in this asset)

<linker>
 <assembly fullname="ExcelDataReader" preserve="all"/>
</linker>

2. Delete or remove it from the project

3. Use the ExcelDataReader.dll that is already present in another plugin or in your project

Performance Test Example Output

Examples

Two example scenes are provided to help you get started with SpreadsheetEasy:

SpreadsheetEasyDemo.unity

A comprehensive demo scene that demonstrates all basic features of SpreadsheetEasy.
This scene includes:

Location: Assets/SpreadsheetEasy/Examples/SpreadsheetEasyDemo.unity

Script: SpreadsheetEasyDemo.cs

[SpreadsheetEasy] Starting performance test...
[SpreadsheetEasy] File: GameData, Sheet: Items
[SpreadsheetEasy] Query: ID='1001' -> Name
[SpreadsheetEasy] Query count: 1000

[SpreadsheetEasy] Test 1: Without index cache (clearing cache each time)
[SpreadsheetEasy] Time without index: 487.32ms
[SpreadsheetEasy] Average per query: 0.4873ms

[SpreadsheetEasy] Test 2: With index cache (indices cached and reused)
[SpreadsheetEasy] Time with index: 9.45ms
[SpreadsheetEasy] Average per query: 0.0095ms

[SpreadsheetEasy] ========== PERFORMANCE RESULTS ==========
[SpreadsheetEasy] Speedup: 51.57x faster
[SpreadsheetEasy] Time saved: 477.87ms (98.1%)
[SpreadsheetEasy] ===

Features Demonstrated:

1. Single Value Reading: Read individual values (string, int, float, bool, Enum) from
Spreadsheet

2. Multiple Values from Same Row: Use SpreadsheetRow to efficiently retrieve
multiple columns

3. Different Data Types: Examples for Vector3, Color, arrays (int , string[]),
and Enum

4. Multiple Rows Query: Get all rows matching a search condition using GetAllRows()

5. Multiple Search Conditions: Query with multiple conditions using
Dictionary<string, string>

6. TryGet Methods: Clean error handling without try-catch blocks

7. Enum Support: Read Enum values from Spreadsheet with case-insensitive string
parsing or integer values

How to Use:

1. Open Assets/SpreadsheetEasy/Examples/SpreadsheetEasyDemo.unity in Unity

2. Make sure example Spreadsheet files are in StreamingAssets folder (see
Troubleshooting if files are missing)

3. Play the scene and check the Console for output

4. Examine SpreadsheetEasyDemo.cs to see code examples for each feature

Example Spreadsheet File: Uses PlayerConfig.xlsx with sheet Players

SpreadsheetEasyPerformanceTest.unity

A performance testing scene that demonstrates the speedup provided by
SpreadsheetEasy's index cache system.

Location: Assets/SpreadsheetEasy/Examples/SpreadsheetEasyPerformanceTest.unity

Script: SpreadsheetEasyPerformanceTest.cs

Features:

1. Performance Benchmarking: Compare query performance with and without index
cache

2. GetRow Performance Test: Measure performance when accessing multiple columns

3. Cache Statistics: Display detailed cache statistics (files, sheets, rows, columns,
memory usage)

4. Benchmark Comparison: Compare GetString vs GetRow for multiple column
access

How to Use:

1. Open
Assets/SpreadsheetEasy/Examples/SpreadsheetEasyPerformanceTest.unity in

Unity

2. Select the SpreadsheetEasyPerformanceTest GameObject in the scene

3. Configure test settings in the Inspector:

TestFileName : Spreadsheet file name to test (e.g., "ItemConfig")

TestSheetName : Sheet name to test (e.g., "Items")

SearchColumn : Column name to search (e.g., "Rarity")

SearchValue : Value to find (e.g., "Rare")

TargetColumn : Column to retrieve (e.g., "Name")

QueryCount : Number of queries to perform (default: 1000)

4. Enable RunTestOnStart to run test automatically when scene starts, or use Context
Menu:

Right-click the component → Run Performance Test

Right-click the component → Test GetRow Performance

Right-click the component → Show Cache Statistics

Right-click the component → Benchmark: GetString vs GetRow

5. Check the Console for detailed performance results

Expected Results:

You should see 50-100x speedup when using index cache compared to clearing cache
each time. Example output:

Example Spreadsheet File: Uses ItemConfig.xlsx with sheet Items

Example Spreadsheet Files

Example Spreadsheet files are located in
Assets/SpreadsheetEasy/Examples/SpreadsheetExamples/ and are automatically

copied to StreamingAssets/SpreadsheetExamples/ when you first import the asset.

If example files are missing, you can manually copy them using:

Menu: Tools → Spreadsheet Easy → Copy Example Files To StreamingAssets

Note: In production environments, you can safely delete the
StreamingAssets/SpreadsheetExamples/ folder if you don't need the example files.

For more information, see the Troubleshooting section.

Notes

Spreadsheet files must be placed in the StreamingAssets folder (or subdirectories
within it).

Spreadsheet file names must be unique across all subdirectories (file names without
path/extension are used as cache keys).

The first row of each sheet must contain column headers; data rows start from the
second row.

[SpreadsheetEasy] ========== PERFORMANCE RESULTS ==========
[SpreadsheetEasy] Speedup: 51.57x faster
[SpreadsheetEasy] Time saved: 477.87ms (98.1%)
[SpreadsheetEasy] ===

Sheet names and column names are case-insensitive but must match exactly
(ignoring case).

Third-Party Licenses

ExcelDataReader

This asset uses ExcelDataReader, a lightweight and fast library written in C# for reading
Microsoft Spreadsheet files.

ExcelDataReader is licensed under the MIT License:

MIT License

Copyright (c) ExcelDataReader contributors

Permission is hereby granted, free of charge, to any person obtaining a
copy
of this software and associated documentation files (the "Software"), to
deal
in the Software without restriction, including without limitation the
rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE

https://github.com/ExcelDataReader/ExcelDataReader

For more information, visit: https://github.com/ExcelDataReader/ExcelDataReader

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE
SOFTWARE.

https://github.com/ExcelDataReader/ExcelDataReader

	SpreadsheetEasy
	Features
	Requirements
	Quick Start
	1. Setup
	2. Load Spreadsheet Files
	Important: File Name Requirements
	3. Basic Usage
	Example Spreadsheet Structure:
	4. SpreadsheetRow for Multiple Values
	5. Multiple Search Conditions

	API Reference
	GetValue Methods
	Parameters:
	Available Methods (Single Condition):
	Available Methods (Multiple Conditions):
	Available GetAll Methods (Multiple Values):

	TryGetValue Methods
	Parameters:
	Return Value:
	Available TryGet Methods (Single Condition):
	Available TryGet Methods (Multiple Conditions):
	Available TryGetAll Methods (Multiple Values):

	GetRow Method
	GetRow Method (Multiple Search Conditions)
	GetAllRows Method (Multiple Matches)
	GetAllRows Method (Multiple Search Conditions)
	GetAll Methods (Multiple Values)
	GetAll Methods (Multiple Search Conditions)
	JSON Export Methods
	Utility Methods

	Spreadsheet File Format Requirements
	Error Handling
	Approach 1: TryGet Methods (Recommended for Missing Data)
	Approach 2: Get Methods with Exception Handling

	Advanced Usage
	SpreadsheetEasy Settings
	Accessing Settings
	Loading Mode
	Configuring Settings
	How Loading Mode Affects Behavior

	Runtime File Loading
	SpreadsheetEasyIndex.txt generation and fallback
	Loading from Subdirectories

	Tools
	Spreadsheet Data JSON Checker
	Access the Tool
	Features
	How to Use
	Validation Process
	Error Messages
	Use Cases

	Performance Optimization
	Benchmark Results
	How It Works
	Recent Performance Improvements
	Performance API
	Best Practices
	DO: Load Data at Startup
	DO: Use GetRow for Multiple Columns
	DO: Use in Update() - It's Fast Enough!
	DO: Cache Frequently Used Data
	CAUTION: Extremely Large Loops (1000+)
	DON'T: Clear Cache Unnecessarily

	Memory Usage
	Performance Testing
	Advanced Optimization Strategies
	Example: Lazy Loading with Application Cache

	Troubleshooting
	Performance Test Example Output

	Examples
	SpreadsheetEasyDemo.unity
	SpreadsheetEasyPerformanceTest.unity
	Example Spreadsheet Files

	Notes
	Third-Party Licenses
	ExcelDataReader

